DOI QR코드

DOI QR Code

Model based Facial Expression Recognition using New Feature Space

새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식

  • 김진옥 (대구한의대학교 국제문화정보대학 모바일콘텐츠학부)
  • Received : 2010.03.11
  • Accepted : 2010.04.13
  • Published : 2010.08.31

Abstract

This paper introduces a new model based method for facial expression recognition that uses facial grid angles as feature space. In order to be able to recognize the six main facial expression, proposed method uses a grid approach and therefore it establishes a new feature space based on the angles that each gird's edge and vertex form. The way taken in the paper is robust against several affine transformations such as translation, rotation, and scaling which in other approaches are considered very harmful in the overall accuracy of a facial expression recognition algorithm. Also, this paper demonstrates the process that the feature space is created using angles and how a selection process of feature subset within this space is applied with Wrapper approach. Selected features are classified by SVM, 3-NN classifier and classification results are validated with two-tier cross validation. Proposed method shows 94% classification result and feature selection algorithm improves results by up to 10% over the full set of feature.

본 연구에서는 얼굴 그리드 각도를 특징공간으로 하는 새로운 모델 기반 얼굴 표정 인식 방법을 제안한다. 제안 방식은 6가지 얼굴 대표 표정을 인식하기 위해 표정 그리드를 이용하여 그리드의 각 간선과 정점이 형성하는 각도를 기반으로 얼굴 특징 공간을 구성한다. 이 방법은 다른 표정 인식 알고리즘의 정확도를 낮추는 원인인 변환, 회전, 크기변화와 같은 어파인 변환에 강건한 특징을 보인다. 또한, 본 연구에서는 각도로 특징공간을 구성하고 이 공간 내에서 Wrapper 방식으로 특징 부분집합을 선택하는 과정을 설명한다. 선택한 특징들은 SVM, 3-NN 분류기를 이용해 분류하고 분류 결과는 2중 교차검증을 통해 검증하도록 한다. 본 연구가 제안한 방법에서는 94%의 표정 인식 결과를 보였으며 특히 특징 부분집합 선택 알고리즘을 적용한 결과 전체 특징을 이용한 경우보다 약 10%의 인식율 개선 효과를 보인다.

Keywords

References

  1. M. Turk, M. Kolsch, "Perceptual Interfaces," Emerging Topics in Computer Vision, Prentice Hall, 2005.
  2. W. Zhao, R. Chellappa, P. J Phillips, A. Rosenfeld, "Face Recognition: A Literature Survey," ACM Computing Surveys, Vol.35, No.4, pp.399-458, 2003. https://doi.org/10.1145/954339.954342
  3. "빛 보상과 외형기반의 특징을 이용한 얼굴 특징 검출", 한국인터넷정보학회논문지, 7권 3호, pp.143-153, 2006.
  4. M. Pantic, L. J. M. Rothkrantz, "Automatic analysis of facial expressions: the state of the art," Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol.22, No.12, pp.1424-1445, 2000. https://doi.org/10.1109/34.895976
  5. I. Cohen, F. G. Cozman, N. Sebe, M. C. Cirelo, T. S. Huang, "Semi-supervised Learning of Classifiers: Theory, Algorithms and their Applications to Human-Computer Interaction," IEEE Trans. on PAMI, Vol.26, pp.1553-1567, 2004. https://doi.org/10.1109/TPAMI.2004.127
  6. 김진옥, "상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식", 한국정보처리학회논문지B, 13-B권, pp.653-662, 2006. https://doi.org/10.3745/KIPSTB.2006.13B.7.653
  7. P. Ekman, "Facial expression and emotion," Personality: Critical Concepts in Psychology, Vol.48, pp.384-92, 1998.
  8. I. Kotsia, I. Pitas, "Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines," IEEE Trans. on Image Processing, Vol.16, No.1, pp.172-187, 2007. https://doi.org/10.1109/TIP.2006.884954
  9. K. Kahler, J. Haber, H.P. Seidel,""Geometry based Muscle Modeling for Facial Animation," Proceedings of Graphics Interface 2001, pp.37-46, 2001.
  10. M. Rydfalk, "Candide: a parameterised face," Linkoping University, 1978.
  11. C. Tomsi., T. Kanade, "Detection and Tracking of Point Features," Carnegie Mellon University Technical Report CMU-CS-91-132, 1991.
  12. Michael J. Lyons, Shigeru Akamatsu, Miyuki Kamachi, Jiro Gyoba, "Coding Facial Expressions with Gabor Wavelets," Proceedings of third IEEE International Conference on Automatic Face and Gesture Recognition, pp.200-205, 1998.
  13. G. Donato, M.S. Bartlett, J.C. Hager, P. Ekman, T.J. Sejnowski, "Classifying Facial Actions," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.10, pp.974-989, 1999. https://doi.org/10.1109/34.799905
  14. R. Kohavi, G. H. John, "Wrappers for Feature Subset Selection," Artificial Intelligence, Vol.97, No.1-2, pp.273-324, 1997. https://doi.org/10.1016/S0004-3702(97)00043-X
  15. C. Schmidt1, J. Brankel, S. E. Chick, "Integrating Techniques from Statistical Ranking into Evolutionary Algorithms," Lecture Notes in Computer Science, Vol.3907, pp.752-763, 2006. https://doi.org/10.1007/11732242_73
  16. P. A. Devijver, J. Kittler, "Pattern Recognition: A Statistical Approach," Prentice Hall, 1982.
  17. P. Pudil, J. Novovicova, J. Kittler, "Locating Search Methods in Feature Selection," Pattern Recognition Letter, Vol.15, No.11, pp.1119-125, 1994. https://doi.org/10.1016/0167-8655(94)90127-9
  18. C. Chang, C. Lin, LIBSVM: a library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm/, 2009.
  19. J. Reunanen, "Overfitting in Making Comparisons between Variable Selection Methods," Journal of Machine Learning, Vol.3, pp.1371-382, 2003. https://doi.org/10.1162/153244303322753715
  20. D. J. Hand, H. Mannila, Padhraic Smyth, "Principles of Data Mining," MIT Press, 2001.

Cited by

  1. A Study on Facial Expression Recognition using Boosted Local Binary Pattern vol.16, pp.12, 2013, https://doi.org/10.9717/kmms.2013.16.12.1357
  2. Impact Analysis of nonverbal multimodals for recognition of emotion expressed virtual humans vol.13, pp.5, 2012, https://doi.org/10.7472/jksii.2012.13.5.9