• Title/Summary/Keyword: Word Recognition

Search Result 799, Processing Time 0.021 seconds

A Multi-Bible Application on an Android Platform Using a Word Tokenization and Recognition Algorithm (단어 구분 및 인식 알고리즘을 이용한 안드로이드 플랫폼 기반의 멀티 성경 애플리케이션)

  • Kang, Sung-Mo;Kang, Myeong-Su;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.4
    • /
    • pp.215-221
    • /
    • 2011
  • Mobile phones, which were used for simply calling and sending text messages, have recently moved to application-oriented digital devices such as smart phones and tablet phones. The rapid increase of smart and tablet phones which can offer advanced ability and run a variety of applications based on Java requires various digital multimedia content activities. These days, there are more than 2.2 billions of Christians around the world. Among them, more than 300 millions of people live in Asian, and all of them have and read the bible. If there is an application for the bible which translates from English to their own languages, it could be very helpful. With this reason, this paper proposes a multi-bible application that supports various languages. To do this, we implemented an algorithm that recognize sentences in the bible as word by word. The algorithm is essentially composed of the following three functions: tokenizing sentences in the bible into word by word (word tokenization), recognizing words by using touch event (word recognition), and translating the selected words to the desired language. Consequently, the proposed multi-bible application supports language translation efficiently by touching words of sentences in the bible.

HMM-Based Automatic Speech Recognition using EMG Signal

  • Lee Ki-Seung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.101-109
    • /
    • 2006
  • It has been known that there is strong relationship between human voices and the movements of the articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The EMG signals were acquired from three articulatory facial muscles. Preliminary, 10 Korean digits were used as recognition variables. The various feature parameters including filter bank outputs, linear predictive coefficients and cepstrum coefficients were evaluated to find the appropriate parameters for EMG-based speech recognition. The sequence of the EMG signals for each word is modelled by a hidden Markov model (HMM) framework. A continuous word recognition approach was investigated in this work. Hence, the model for each word is obtained by concatenating the subword models and the embedded re-estimation techniques were employed in the training stage. The findings indicate that such a system may have a capacity to recognize speech signals with an accuracy of up to 90%, in case when mel-filter bank output was used as the feature parameters for recognition.

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

A Study on the Isolated word Recognition Using One-Stage DMS/DP for the Implementation of Voice Dialing System

  • Seong-Kwon Lee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1039-1045
    • /
    • 1994
  • The speech recognition systems using VQ have usually the problem decreasing recognition rate, MSVQ assigning the dissimilar vectors to a segment. In this paper, applying One-stage DMS/DP algorithm to the recognition experiments, we can solve these problems to what degree. Recognition experiment is peformed for Korean DDD area names with DMS model of 20 sections and word unit template. We carried out the experiment in speaker dependent and speaker independent, and get a recognition rates of 97.7% and 81.7% respectively.

  • PDF

A study on character segmentation and determination of linguistic type for recognition of on-line cursive characters (온라인 연속 필기 문자의 인식을 위한 문자간 구분 및 종류의 결정에 관한 연구)

  • 박강령;전병환;김창수;김우성;김재희
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.61-69
    • /
    • 1997
  • With the vigorous researches in the character recognition, the need to recognize run-on multilingual handwritten characters is increasing to provide uses with more comfortable PUI(pen user interface) environments. In general, many intermediate word candidates word candidates are generated in run-on multilingual recognition because there is no information of ending position and linguistic kind of character. To remove unnecessary word candidates which are generated in run-on multilingual recognition, we classify them into two groups and select the best candidate among the word candidates in the group where the final characater is completed using 5 attributes. In this research, we propose a method in order to select the best one candidate. It is called WRM (Weighted ranking method). The weights are adaptively trained by LMS(Least mean square) learning rule. Results show that the abilities of decision makin gusing weights are much better than those not using weights.

  • PDF

The Neighborhood Effects in Korean Word Recognition Using Computation Model (계산주의적 모델을 이용한 한국어 시각단어 재인에서 나타나는 이웃효과)

  • Park, Ki-Nam;Kwon, You-An;Lim, Heui-Seok;Nam, Ki-Chun
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.295-297
    • /
    • 2007
  • This study suggests a computational model to inquire the roles of phonological information and orthography information in the process of visual word recognition among the courses of language information processing and the representation types of the mental lexicon. As the result of the study, the computational model showed the phonological and orthographic neighborhood effect among language phenomena which are shown in Korean word recognition, and showed proofs which implies that the mental lexicon is represented as phonological information in the process of Korean word recognition.

  • PDF

Removal of Heterogeneous Candidates Using Positional Accuracy Based on Levenshtein Distance on Isolated n-best Recognition (레벤스타인 거리 기반의 위치 정확도를 이용하여 다중 음성 인식 결과에서 관련성이 적은 후보 제거)

  • Yun, Young-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.428-435
    • /
    • 2011
  • Many isolated word recognition systems may generate irrelevant words for recognition results because they use only acoustic information or small amount of language information. In this paper, I propose word similarity that is used for selecting (or removing) less common words from candidates by applying Levenshtein distance. Word similarity is obtained by using positional accuracy that reflects the frequency information along to character's alignment information. This paper also discusses various improving techniques of selection of disparate words. The methods include different loss values, phone accuracy based on confusion information, weights of candidates by ranking order and partial comparisons. Through experiments, I found that the proposed methods are effective for removing heterogeneous words without loss of performance.

A study on the vowel extraction from the word using the neural network (신경망을 이용한 단어에서 모음추출에 관한 연구)

  • 이택준;김윤중
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.721-727
    • /
    • 2003
  • This study designed and implemented a system to extract of vowel from a word. The system is comprised of a voice feature extraction module and a neutral network module. The voice feature extraction module use a LPC(Linear Prediction Coefficient) model to extract a voice feature from a word. The neutral network module is comprised of a learning module and voice recognition module. The learning module sets up a learning pattern and builds up a neutral network to learn. Using the information of a learned neutral network, a voice recognition module extracts a vowel from a word. A neutral network was made to learn selected vowels(a, eo, o, e, i) to test the performance of a implemented vowel extraction recognition machine. Through this experiment, could confirm that speech recognition module extract of vowel from 4 words.

  • PDF

Character Level and Word Level English License Plate Recognition Using Deep-learning Neural Networks (딥러닝 신경망을 이용한 문자 및 단어 단위의 영문 차량 번호판 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.

A Study on Word Recognition Using Neural-Fuzzy Pattern Matching (뉴럴-퍼지패턴매칭에 의한 단어인식에 관한 연구)

  • 이기영;최갑석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.130-137
    • /
    • 1992
  • This paper presents the word recognition method using a neural-fuzzy pattern matching, in order to make a proper speech pattern for a spectrum sequence and to improve a recognition rate. In this method, a frequency variation is reduced by generating binary spectrum patterns through associative memory using a neural network, and a time variation is decreased by measuring the simillarity using a fuzzy pattern matching. For this method using binary spectrum patterns and logic algebraic operations to measure the simillarity, memory capacity and computation requirements are far less than those of DTW using a conventional distortion measure. To show the validity of the recognition performance for this method, word recognition experiments are carried out using 28 DDD city names and compared with DTW and a fuzzy pattern matching. The results show that our presented method is more excellent in the recognition performance than the other methods.

  • PDF