• 제목/요약/키워드: Word Network

검색결과 725건 처리시간 0.023초

온라인 패션커뮤니티 네트워크에서의 구전 영향력과 확산력에 관한 연구 (Study on Influence and Diffusion of Word-of-Mouth in Online Fashion Community Network)

  • 송기은;이덕희
    • 복식
    • /
    • 제65권6호
    • /
    • pp.25-35
    • /
    • 2015
  • The purpose of this study is to investigate the characteristics of members and communities that have significant influence in the online fashion community through their word-of-mouth activities. In order to identify the influence and the diffusion of word-of-mouth in fashion community, the study selected one online fashion community. Then, the study sorted the online posts and comments made on fashion information and put them into the matrix form to perform social network analysis. The result of the analysis is as follows: First, the fashion community network used in the study has many active members that relay information very quickly. Average time for information diffusion is very short, taking only one or two days in most cases. Second, the influence of word-of-mouth is led by key information produced from only a few members. The number of influential members account for less than 20% of the total number of community members, which indicate high level of degree centrality. The diffusion of word-of-mouth is led by even fewer members, which represent high level of betweenness centrality, compared to the case of degree centrality. Third, component characteristic shares similar information with about 70% of all members being linked to maximize information influence and diffusion. Fourth, a node with high degree centrality and betweenness centrality shares similar interests, presenting strain effect to particular information. Specially, members with high betweenness centrality show similar interests with members of high degree centrality. The members with high betweenness centrality also help expansion of related information by actively commenting on posts. The result of this research emphasizes the necessity of creation and management of network to efficiently convey fashion information by identifying key members with high level of information influence and diffusion to enhance the outcome of online word-of-mouth.

단어의 의미와 문맥을 고려한 순환신경망 기반의 문서 분류 (Document Classification using Recurrent Neural Network with Word Sense and Contexts)

  • 주종민;김남훈;양형정;박혁로
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권7호
    • /
    • pp.259-266
    • /
    • 2018
  • 본 논문에서는 단어의 순서와 문맥을 고려하는 특징을 추출하여 순환신경망(Recurrent Neural Network)으로 문서를 분류하는 방법을 제안한다. 단어의 의미를 고려한 word2vec 방법으로 문서내의 단어를 벡터로 표현하고, 문맥을 고려하기 위해 doc2vec으로 입력하여 문서의 특징을 추출한다. 문서분류 방법으로 이전 노드의 출력을 다음 노드의 입력으로 포함하는 RNN 분류기를 사용한다. RNN 분류기는 신경망 분류기 중에서도 시퀀스 데이터에 적합하기 때문에 문서 분류에 좋은 성능을 보인다. RNN에서도 그라디언트가 소실되는 문제를 해결해주고 계산속도가 빠른 GRU(Gated Recurrent Unit) 모델을 사용한다. 실험 데이터로 한글 문서 집합 1개와 영어 문서 집합 2개를 사용하였고 실험 결과 GRU 기반 문서 분류기가 CNN 기반 문서 분류기 대비 약 3.5%의 성능 향상을 보였다.

주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석 (Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network)

  • 신현보;김혜진
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.179-200
    • /
    • 2019
  • 구전(Word-of-Mouth) 활동은 오래 전부터 기업의 마케팅 과정에서 중요성을 인식하고 특히 마케팅 분야에서 많은 주목을 받아왔다. 최근에는 인터넷의 발달에 따라 온라인 뉴스, 온라인 커뮤니티 등에서 사람들이 지식과 정보를 주고 받는 방식이 다양해지면서 구전은 후기, 평점, 좋아요 등으로 입소문의 양상이 다각화되고 있다. 이러한 현상에 따라 구전에 관한 다양한 연구들이 선행되어왔으나, 이들을 종합적으로 분석한 메타 분석 연구는 부재하다. 본 연구는 학술 빅데이터를 활용해 구전 관련 연구동향을 알아내기 위해서 텍스트 마이닝 기법을 적용하여 주요 연구들을 추출하고 시기별로 연구들의 주요 쟁점을 파악하는 기법을 제안하였다. 이를 위해서 1941년부터 2018년까지 인용 데이터베이스인 Scopus에서 'Word-of-Mouth'라는 키워드로 검색되는 총 4389건의 문헌을 수집하였고, 영어 형태소 분석과 불용어 제거 등 전처리 과정을 통해 데이터를 정제하였다. 본 연구는 학문 분야의 발전 궤적을 추적하는 데 활용되는 주경로 분석기법을 적용해 구전과 관련된 핵심 연구들을 추출하여 연구동향을 거시적 관점에서 제시하였고, 단어동시출현 정보를 추출하여 키워드 간 네트워크를 구축하여 시기별로 구전과 관련된 연관어들이 어떻게 변화되었는지 살펴봄으로써 연구동향을 미시적 관점에서 제시하였다. 수집된 문헌 데이터를 기반으로 인용 네트워크를 구축하고 SPC 가중치를 적용하여 키루트 주경로를 추출한 결과 30개의 문헌으로 구성된 주경로가 추출되었고, 연관어 네트워크 분석을 통해서는 시기별로 온라인 시대, 관광 산업 등 다양한 산업군 등 산업 변화가 반영돼 시대적 변화와 더불어 발전하고 있는 학술적 영역의 변화를 확인할 수 있었다.

Segmenting Chinese Texts into Words for Semantic Network Analysis

  • Danowski, James A.
    • Journal of Contemporary Eastern Asia
    • /
    • 제16권2호
    • /
    • pp.110-144
    • /
    • 2017
  • Unlike most languages, written Chinese has no spaces between words. Word segmentation must be performed before semantic network analysis can be conducted. This paper describes how to perform Chinese word segmentation using the Stanford Natural Language Processing group's Stanford Word Segmenter v. 3.8.0, released in June 2017.

소셜네트워크 분석과 Co-word 분석을 사용한 Altmetric 연구 개발동향 (Development Tendency of Altmetrics Research: Using Social Network Analysis and Co-word Analysis)

  • 이현창;이가배;신성윤
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2089-2094
    • /
    • 2017
  • 알트메트릭스는 인용을 기반으로 한 전통적인 지표를 보완하기 위한 측정 지표이면서 정략적 데이터이다. 이러한 알트메트릭스 에 관한 연구는 지난 몇 년간 전통적인 계량 정보학의 보완에 힘입어 중요한 비중을 차지해오고 있다. 본 논문은 알트메트릭스 연구 현황과 동향을 파악하는 것을 목적으로 한다. 총 187건의 논문을 분석하였으며, 이를 통해 2005년이후로 알트메트릭스 연구에 지속적인 상승이 있음을 알 수 있다. 소셜 네트워크 분석과 co-word 분석을 사용하여 저자 협동 네트워크와 키워드 공존 네트워크를 구축한다. 계층적 클러스터링으로 4개의 알트메트릭스 연구가 발견되었으며, 그 결과는 알트메트릭스의 추후 연구에 매우 유용할 수 있다.

네트워크 기반 대한민국 역대 대통령 취임사 분석 (Analysis of Inauguration Address of Previous Korean Presidents Based on Network)

  • 김학용
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.11-19
    • /
    • 2021
  • 대통령 취임사는 국가 비전을 제시하고 대통령의 정치철학, 정책기조와 방향을 국민들에게 전달할 수 있는 매우 유용한 수단이다. 이런 이유로 취임사를 분석하는 것은 해당 대통령을 이해하고 그 시대를 파악하는데 도움을 줄 것이다. 대통령 취임사는 다양한 학문분야에서 분석할 수 있지만, 본 연구에서는 취임사를 하나의 콘텐츠로 보고 네트워크를 기반으로 분석하고자 하였다. 취임사에 등장하는 단어의 빈도수를 중심으로 분석하는 단어구름이 널리 사용되지만 네트워크를 기반으로 분석하면 문장 속에 들어있는 맥락을 도출할 수 있기 때문에 유용한 방법이 될 것이다. 대한민국 역대 대통령 취임사 전체 네트워크를 구축하고 구조인자를 제시하였다. 네트워크로부터 도출한 핵심단어 및 단어구름의 핵심단어를 비교분석하여 대통령의 정책 방향 등을 도출하였다. 대통령 각각의 취임사 네트워크를 구축하여 핵심단어 및 네트워크의 구조인자인 근접 중심성을 비교 분석하여 취임사의 특성을 제시하였다. 네트워크 기반 역대 대통령 취임사 분석은 궁극적으로 대통령의 이해와 평가를 위한 자료로 활용할 수 있을 것으로 기대한다.

동사 어휘의미망의 반자동 구축을 위한 사전정의문의 중심어 추출 (The Extraction of Head words in Definition for Construction of a Semi-automatic Lexical-semantic Network of Verbs)

  • 김혜경;윤애선
    • 한국언어정보학회지:언어와정보
    • /
    • 제10권1호
    • /
    • pp.47-69
    • /
    • 2006
  • Recently, there has been a surge of interests concerning the construction and utilization of a Korean thesaurus. In this paper, a semi-automatic method for generating a lexical-semantic network of Korean '-ha' verbs is presented through an analysis of the lexical definitions of these verbs. Initially, through the use of several tools that can filter out and coordinate lexical data, pairs constituting a word and a definition were prepared for treatment in a subsequent step. While inspecting the various definitions of each verb, we extracted and coordinated the head words from the sentences that constitute the definition of each word. These words are thought to be the main conceptual words that represent the sense of the current verb. Using these head words and related information, this paper shows that the creation of a thesaurus could be achieved without any difficulty in a semi-automatic fashion.

  • PDF

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

  • Samat Ali;Alim Murat
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.355-369
    • /
    • 2023
  • Since the widespread adoption of deep-learning and related distributed representation, there have been substantial advancements in part-of-speech (POS) tagging for many languages. When training word representations, morphology and shape are typically ignored, as these representations rely primarily on collecting syntactic and semantic aspects of words. However, for tasks like POS tagging, notably in morphologically rich and resource-limited language environments, the intra-word information is essential. In this study, we introduce a deep neural network (DNN) for POS tagging that learns character-level word representations and combines them with general word representations. Using the proposed approach and omitting hand-crafted features, we achieve 90.47%, 80.16%, and 79.32% accuracy on our own dataset for three morphologically rich languages: Uyghur, Uzbek, and Kyrgyz. The experimental results reveal that the presented character-based strategy greatly improves POS tagging performance for several morphologically rich languages (MRL) where character information is significant. Furthermore, when compared to the previously reported state-of-the-art POS tagging results for Turkish on the METU Turkish Treebank dataset, the proposed approach improved on the prior work slightly. As a result, the experimental results indicate that character-based representations outperform word-level representations for MRL performance. Our technique is also robust towards the-out-of-vocabulary issues and performs better on manually edited text.

종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기 (Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network)

  • 이현영;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.441-448
    • /
    • 2019
  • 기존의 자동 띄어쓰기 연구는 n-gram 기반의 통계적인 기법을 이용하거나 형태소 분석기를 이용하여 어절 경계면에 공백을 삽입하는 방법으로 띄어쓰기 오류를 수정한다. 본 논문에서는 심층 신경망을 이용한 종단 간(end-to-end) 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 자동 띄어쓰기 문제를 어절 단위가 아닌 음절 단위 태그 분류 문제로 정의하고 음절 unigram 임베딩과 양방향 LSTM Encoder로 문장 음절간의 양방향 의존 관계 정보를 고정된 길이의 문맥 자질 벡터로 연속적인 벡터 공간에 표현한다. 그리고 새로이 표현한 문맥 자질 벡터를 자동 띄어쓰기 태그(B 또는 I)로 분류한 후 B 태그 앞에 공백을 삽입하는 방법으로 한국어 문장의 자동 띄어쓰기를 수행하였다. 자동 띄어쓰기 태그 분류를 위해 전방향 신경망, 신경망 언어 모델, 그리고 선형 체인 CRF의 세 가지 방법의 분류 망에 따라 세 가지 심층 신경망 모델을 구성하고 종단 간 한국어 자동 띄어쓰기 시스템의 성능을 비교하였다. 세 가지 심층 신경망 모델에서 분류 망으로 선형체인 CRF를 이용한 심층 신경망 모델이 더 우수함을 보였다. 학습 및 테스트 말뭉치로는 최근에 구축된 대용량 한국어 원시 말뭉치로 KCC150을 사용하였다.

네트워크 기반 확산모형 (Network Based Diffusion Model)

  • 주영진
    • 경영과학
    • /
    • 제32권3호
    • /
    • pp.29-36
    • /
    • 2015
  • In this research, we analyze the sensitivity of the network density to the estimates for the Bass model parameters with both theoretical model and a simulation. Bass model describes the process that the non-adopters in the market potential adopt a new product or an innovation by the innovation effect and imitation effect. The imitation effect shows the word of mouth effect from the previous adopters to non-adopters. But it does not divide the underlying network structure from the strength of the influence over the network. With a network based Bass model, we found that the estimate for the imitation coefficient is highly sensitive to the network density and it is decreasing while the network density is decreasing. This finding implies that the interpersonal influence can be under-looked when the network density is low. It also implies that both of the network density and the interpersonal influence are important to facilitate the diffusion of an innovation.