Lee Borim;Lee Sook-hyang;Park Cheon-Bae;Kang Seok-keun
MALSORI
/
no.38
/
pp.41-70
/
1999
Researches on perception have, in recent years, been increasingly popular as a means of accounting for cross-linguistic sound patterns (Ohala, 1992; Hemming, 1995; Jun, 1995; Steriade, 1997 among others). In loanword phonology, Silverman(1990, 1992) argues that words from a source language are scanned through the perceptual level and that the features perceived by a speaker are stored in the input to be processed according to his/her native language's phonological constraints. The purpose of this paper is to test the validity of Silverman's proposal by examining the correlation between perception and production of Korean learners of English. We specifically focussed on perception and production of stop release by contrasting English loanwords with English words loarned through education to see if there were any significant differences. The results showed that there was no substantive correlation between the Korean speakers' perception of the loanwords pronounced by English speakers and their own production of those words. In the case of English words, however, the Korean speakers' production was closely related with their perception, although some inter-speaker variations were observed. With Optimality Theory (Prince & Smolenksy, 1993) as a theoretical framework of analysis, it was shown that the theory is a useful means of implementing a phonetics-phonology interface and relating perceptual processes with speech production. Specifically, under the assumption that loanwords with [t]~[t/sup h/] alternation (e.g.,'cut') are originally borrowed into Korean as two different input forms, all the alternations could be straightforwardly accounted for in terms of a unified ranking of constraints.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.4
/
pp.340-345
/
2018
The Compared to general sentences, the Equation uses a complex structure and various characters and symbols, so that it is not possible to input all the character sets by simply inputting a keyboard. Therefore, the editor is implemented in a text editor such as Hangul or Word. In order to express the Equation properly, it is necessary to have the learner information which can be meaningful to interpret the syntax. Even if a character is input, it can be represented by another expression depending on the relationship between the size and the position. In other words, the form of the expression is expressed as a tree model considering the relationship between characters and symbols such as the position and size to be expressed. As a field of character recognition application, a technique of recognizing characters or symbols(code) has been widely known, but a method of inputting and interpreting a Equation requires a more complicated analysis process than a general text. In this paper, we have implemented a Equation recognizer that recognizes characters in expressions and quickly analyzes the position and size of expressions.
Taking devantage of the property that Korean digit is a mono-syllable word, we proposed a spoken Korean-digit recognition scheme using the multi-layer perceptron. The spoken Korean-digit is divided into three segments (initial sound, medial vowel, and final consonant) based on the voice starting / ending points and a peak point in the middle of vowel sound. The feature vectors such as cepstrum, reflection coefficients, ${\Delta}$cepstrum and ${\Delta}$energy are extracted from each segment. It has been shown that cepstrum, as an input vector to the neural network, gives higher recognition rate than reflection coefficients. Regression coefficients of cepstrum did not affect as much as we expected on the recognition rate. That is because, it is believed, we extracted features from the selected stationary segments of the input speech signal. With 150 ceptral coefficients obtained from each spoken digit, we achieved correct recognition rate of 97.8%.
When a person sees a sentence and understands the sentence, the person understands the sentence by reminiscent of the main word in the sentence as an image. Text-to-image is what allows computers to do this associative process. The previous deep learning-based text-to-image model extracts text features using Convolutional Neural Network (CNN)-Long Short Term Memory (LSTM) and bi-directional LSTM, and generates an image by inputting it to the GAN. The previous text-to-image model uses basic embedding in text feature extraction, and it takes a long time to train because images are generated using several modules. Therefore, in this research, we propose a method of extracting features by using the attention mechanism, which has improved performance in the natural language processing field, for sentence embedding, and generating an image by inputting the extracted features into the GAN. As a result of the experiment, the inception score was higher than that of the model used in the previous study, and when judged with the naked eye, an image that expresses the features well in the input sentence was created. In addition, even when a long sentence is input, an image that expresses the sentence well was created.
Due to the development and dissemination of modern technology, anyone can easily communicate using services such as social network service (SNS) through a personal computer (PC) or smartphone. The development of these technologies has caused many beneficial effects. At the same time, bad effects also occurred, one of which was the spam problem. Spam refers to unwanted or rejected information received by unspecified users. The continuous exposure of such information to service users creates inconvenience in the user's use of the service, and if filtering is not performed correctly, the quality of service deteriorates. Recently, spammers are creating more malicious spam by distorting the image of spam text so that optical character recognition (OCR)-based spam filters cannot easily detect it. Fortunately, the level of transformation of image spam circulated on social media is not serious yet. However, in the mail system, spammers (the person who sends spam) showed various modifications to the spam image for neutralizing OCR, and therefore, the same situation can happen with spam images on social media. Spammers have been shown to interfere with OCR reading through geometric transformations such as image distortion, noise addition, and blurring. Various techniques have been studied to filter image spam, but at the same time, methods of interfering with image spam identification using obfuscated images are also continuously developing. In this paper, we propose a deep learning-based spam image detection model to improve the existing OCR-based spam image detection performance and compensate for vulnerabilities. The proposed model extracts text features and image features from the image using four sub-models. First, the OCR-based text model extracts the text-related features, whether the image contains spam words, and the word embedding vector from the input image. Then, the convolution neural network-based image model extracts image obfuscation and image feature vectors from the input image. The extracted feature is determined whether it is a spam image by the final spam image classifier. As a result of evaluating the F1-score of the proposed model, the performance was about 14 points higher than the OCR-based spam image detection performance.
Journal of Institute of Control, Robotics and Systems
/
v.18
no.7
/
pp.627-631
/
2012
Observable mathematical model of DDM (Direct Dirve Motor) was suggested. The motor that operates the object system directly is called DDM. DDM has many strong points, however, it has a significant disadvantage, that it is more sensitive to the external force than the motor with reduction gear. In other word, if the force is applied, air gap of the motor can be perturbed. This causes not only difficulty in motor control but also even more serious problem, such as the breakdown of motor. However, if the air gap variation can be estimated, it can help prevent these problems. DDM should be modeled to estimate the air gap variation. The type of researched DDM is PMSM (Permanent Magnet Synchronous Motor) and precedent model of PMSM includes only characteristics of electro-magnetic system and rotational motion. However, suggested model should also include characteristics of translational motion of rotor to estimate the air gap variation. Also, this model should satisfy observability condition, because state observer is designed based on this model.
This paper presents a method for speech recognition using multi-section vector-quantization (MSVQ) and time-delay recurrent neural network (TDTNN). The MSVQ generates the codebook with normalized uniform sections of voice signal, and the TDRNN performs the speech recognition using the MSVQ codebook. The TDRNN is a time-delay recurrent neural network classifier with two different representations of dynamic context: the time-delayed input nodes represent local dynamic context, while the recursive nodes are able to represent long-term dynamic context of voice signal. The cepstral PLP coefficients were used as speech features. In the speech recognition experiments, the MSVQ/TDRNN speech recognizer shows 97.9 % word recognition rate for speaker independent recognition.
The method of vocal tract normalization is a successful method for improving the accuracy of inter-speaker normalization. In this paper, we present an intra-speaker warping factor estimation based on pitch alteration utterance. The feature space distributions of untransformed speech from the pitch alteration utterance of intra-speaker would vary due to the acoustic differences of speech produced by glottis and vocal tract. The variation of utterance is two types: frequency and amplitude variation. The vocal tract normalization is frequency normalization among inter-speaker normalization methods. Therefore, we have to consider amplitude variation, and it may be possible to determine the amplitude warping factor by calculating the inverse ratio of input to reference pitch. k, the recognition results, the error rate is reduced from 0.4% to 2.3% for digit and word decoding.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.435-438
/
2003
A townscape has been a main factor in urban-development problems in Japan. In the townscape, keeping harmony with environment is a common goal. But useful and meaningful goals are expressing individuality and impression of the town in the townscape. In this paper, we propose the colony planning support system system to improve the townscape. The system finds propositional colour combinations based on three elements, town image, colour harmony, and cost. The targets of this model are mostly townscapes in residential areas that already exist, In this paper, we introduce the construction of a Kansei evaluation model to quantify the impression. First, we conducted computer-based evaluational experiments for 20 subjects using the SD method to clarify the relationship between town image and street colours. We chose 16 adjective words related to town image and prepared 100 colour picture samples for the evaluation. After the experiments, we constructed the model using a neural network for each word. We chose 62 experimental results for the training data of the neural network and 20 results for the testing data. Each colour in the data was selected to have unique hue, brightness or saturation attributes, After the construction, we tested the model for accuracy. We input the testing data into the constructed model and calculated errors between the output from the model and the experimental results. Testing of the model showed that the model worked well for more than 80% of the samples. The model demonstrated influences of colours on the town image.
Journal of Information Technology Applications and Management
/
v.11
no.4
/
pp.35-47
/
2004
The nuclear design analysis requires time-consuming and erroneous model-input preparation. code run. output analysis and quality assurance process. To reduce human effort and improve design quality and productivity. Innovative Design Processor (IDP) is being developed. Two basic principles of IDP are the document-oriented desigll and the web-based design. The document-oriented design is that. if the designer writes a design document called active document and feeds it to a special program. the final document with complete analysis. table and plots is made automatically. The active documents can be written with Microsoft Word or created automatically on the web. which is another framework of IDP. Using the proper mix-up of server side and client side programming under the LAMP (Linux/Apache/MySQL/PHP) environment. it e design process on the web is modeled as a design wizard style so that even a novice designer makes the design document easily. This automation using the IDP is now being implemented for all the reload design of Korea Standard Nuclear Power Plant (KSNP) type PWRs. The introduction of this process will allow large reduction in all reload design efforts of KSNP and provide a platform for design and R&D tasks of KNFC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.