FAEA B Q71 2A42A AF3 A2E A

H}
=

* |x L2
H} z 4

A
T " m

Development of a Document-Oriented
and Web-Based Nuclear Design Automation System

Yong Soo Park® - Jong Kyung Kim™

Abstract

The nuclear design analysis requires time-consuming and erroneous model-input preparation, code
run, output analysis and qua ity assurance process. To reduce human effort and improve design quality
and productivity, Innovative [iesign Processor (IDP) is being developed. Two basic principles of IDP are
the document-oriented design and the web-based design. The document-oriented design is that, if the
designer writes a design document called active document and feeds it to a special program, the final
document with complete ana ysis, table and plots is made automatically. The active documents can be
written with Microsoft Word or created automatically on the web, which is another framework of IDP.
Using the proper mix-up of server side and client side programming under the LAMP (Linux/Apache/
MySQL/PHP) environment, tte design process on the web is modeled as a design wizard style so that
even a novice designer makes the design document easily. This automation using the IDP is now being
implemented for all the reloed design of Korea Standard Nuclear Power Plant (KSNP) type PWRs. The
introduction of this process 'vill allow iarge reduction in all reload design efforts of KSNP and provide
a platform for design and RAD tasks of KNFC.

Keywords : Nuclear Design Automation, Document-oriented Design, Active Document, Web, IDP

=242 : 20044 38 9¢ =2AIX|EHE el : 20044 99 129
" SIHAXRARE LAANK Melgi1e
- siottgtm KT n

36 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

The nuclear design is one of the several key
design aspects that ensure nuclear fuel design
limits will not be exceeded during normal oper-
ation of nuclear power plant. It requires the
complex three~dimensional core nodal models
and several computer codes. Much time and ef-
fort is spent on preparing accurate model inputs,
running codes and processing the output. Many
tnals, therefore, have been made to reduce hu-
man effort and improve design quality and pro-
ductivity. The conventional method is to make
autornation programs written in high level lan-
guages under X window system. C++ with Motif
toolkit is popular for this purpose.

No matter what languages were used, the
main idea is always code-oriented. The code-
oriented design is that the designer prepares
computer code input and generates the pre-fixed
document using an automation program (See
<Figure 1>>). This approach seems 1o be suitable
to normal reload design, in which little changes
in design procedures are made. But it is also true
that this approach deprives designer of the right
to keep up with the design change. If any design
changes happen, the automation program should
be modified by programmer, not designer. More-
over, since the computing environment is So
rapidly changing that software made today may
be outdated easily, the cross—platform or plat-
form-independent software is highly recom-
mended. Therefore, a new paradigm to meet this
claim is needed, too.

Korea Nuclear Fuel Company (KNFC) is de-

veloping an innovative design automation sys-

tem called Innovative Design Processor (IDP).
IDP is a system that enables designer to do all
the nuclear design works with convenience.
Two basic principles of IDP are the docu-
ment-oriented design and the web-based

design.
glode [Code - Post-Processing
put > R &
Preparation un Documentation

<Figure 1> Code-Oriented Design

2. Document-Oriented Design

The document-oriented or document-cen-
tered design is that the designer focuses on pre-
paring design document, rather than computer
code input. In other words, if the designer pre-
pares a design document and feeds it to a special
program, he/she can get the final document with
complete analysis, tables and plots automatically
(See <Figure 2>). This greatly relieves designer
from the burden of documentation after com-
putation. Because the designer can edit the do-
cument, he/she can take care of any design
change without programmer's support. The
document is not usual formatted text and called
active document [Robert Spinrad, 1983].

Feed the Document
to Special Program

Document
Preparation

<Figure 2> Document-Oriented Design

2.1 Active Document

The evolution of Information Technology has
changed the way we think about documents.

A1 A4z FMEA 2 Y7 A4 55 AA" AR 37

The active document is one of them. Each time
the document is accessed by a user or a pro-
gram, it can be seen a different way and it can
present a different content depending on the
computing environment. In fact, an active docu-
ment can be defined as a document that trans-
forms itself and/or its computing environment
according to the state of that e 1vironmentl and
to the document editing operatio:1s. Applications
that are embodied as active doc 1ments may be
called active document applicaticns. Such appli-
cations may be easier to huild than their tradi-
tional counterparts because the’ can take ad-
vantage of the capabilities of a clocument editor
[Douglas B. Terry and Donald (;. Baker, 1990].

As a document editor, Inteleaf [Paul M.
English and Raman Tenneti, 1994] is an ex-
cellent platform for the design, implementation,
and delivery of active dccumeits. The main
structure of Interleaf is called a component,
which contains content as well as formatting
information. For example, in the . nterleaf repre-
sentation of this paper, the curret paragraph is
a para component. Because Irterleaf allows
documents to be active, it is pcssible to build
complete applications using nohing but do-
cuments.

Since the mid-1990s Westinghouse Electric
Company (WEC) has developed the Physics
Assessment Checklist (PAC) [J. A. Brown, et
al, 1997] methodology, which cor-elates a small
set of simple screening parameters to the more
extensive reactor physics parame'er set used in
the plant safety analyses. In orcer to do PAC

assessment easily, WEC developed an automa-
tion tool called Active Procedure Toolkit (APtk)
[M. P. Rubin and S. G. Wagner, 1999} and Inter-
leaf’s active document, which has such design
actions defined by active components as code
input preparation, code run and output summary
with table and figure. The active document is
processed by Interieaf parser in APtk until the
final document is made. Although APtk with
Interleaf is very effective design automation

tool, it has serious drawbacks as follows :

e Active document is Interleaf’s unique ASCII
format which can be edited by Interleaf only.

¢ Interleaf is old-fashioned and not suitable to
modern computing environment.

¢ Interleaf is available no more in software
market.

¢ APtk is written in UNIX C-shell and gawk
scripts, which are hard to write a robust
parser to parse active document in other
popular formats.

Taking advantage of APtk, KNFC has de-
veloped a new active document processing
system. The system eliminates APtk’s draw-
backs by adopting active document written in
more popular markup language and creating a
robust parser written in the more powerful

language.

22 HTML

Hyper Text Markup Language (HTML) [Chuck
Musciano and Bill Kennedy, 2002] has been the

38 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

<html>
<head>
<title>IDP Test</title>
<meta name = “keywords” content = “IDP, final parameter” />
<meta name = “description” content = “IDP - Final Parameter Cal.” />
<link rel = “File - List” href = “/IDPtest. files/filelist. xml” />
<link rel = “stylesheet” type = “text/css” href = “http:/koyw/css/IDP.css” />
<thead>
<body>
<pre class = “APformula - hide™>
docnumber = “foo”
num=5
<pre>
<p class = “MsoNormal”>Appendix to #docnumber# </p>
<br class = “PageBreak” clear = “all” />
<pre class = “APif"> num > 3 </pre>
<pre class = “APfor™> INDEX=1 ; INDEX<= num ; INDEX++</pre>
<pre class = “APsubmit-hide™> gnuplot < plot.inp </pre>
<pre class = “APimage™ploteps 1 2.3 4 42 A4 </pre>
<br class = “PageBreak” clear = “all” />
<pre class = “APendfor">End of APfor loop </pre>
<pre class = “APendif”>Bottom of APif Block</pre>
</body>
</htmD>

{Figure 3> Active Document in HTML Format

central markup language since the advent of
web. Although HTML is not so suitable to do—
cument publishing, it can represent a document
well if it is written with Cascading Style Sheets
(CSS) {Eric Meyer, 2000]. With CSS, the do-
cument contents can be separated from style,
and active component can be represented by the
concept of class. Therefore, the active document
can be written in HTML and CSS. <Figure 3>
is a sample active document. A simple parser
for an HTML document with the consistent
structure can be made relatively easily. How-
ever, parsing non-structured HTML document
(See <Figure 4>) requires a robust parser like
event-driven or tree-based parser. A robust
parser is written in Perl language to parse any
HTML document. The parser is based on the

Perl's HTML::Parser library and created by
defining some callback functions suitable to the
library.

<html><head><title>IDP Test</title><meta name
= “keywords”” content = “IDP, final parameter” />
<meta name = “description” content = “IDP - Final
Parameter Cal.” /><link rel = “File-List” href =“/
IDPtest files/filelist.xml” /><link rel = “stylesheet”
type = “text/css” href = “http://koyu/css/IDP.css” />
</head>

<body><pre class = “APformula-hide”>docnumber
= “foo”

num = 5</pre><p class = “MsoNormal”>Appendix
to #docnumber#</p>

<br class = “PageBreak” clear = “all” /><pre class =
“APif"> num > 3 </pre><pre class = “APfor">
INDEX =1 ; INDEX<= num ; INDEX++</pre>

<pre class = “APsubmit ~ hide”>gnuplot < plot.inp
</pre>

<pre class = “APimage”>plot.eps 1 2.3 4 42 A4
</pre><br class = “PageBreak” clear = “all” /><pre
class = “APendfor">End of APfor loop</pre><pre
class = “APendif">Bottom of APif Block</pre>
</body></html>Bottom of APif Block</pre>

{Figure 4> Non-structured HTML Document

The active document can be created by
simple notepad or HTML editor. MS Word can
be used to create an active document, although
it is not so good HTML editor. With MS Word,
user can make an active document freely under
WYSIWYG (What You See Is What You Get)
environment and insert an active component by
MS Word's style function. This helps round-
trip the document for editing purpose. For
example, if active document is created in MS
Word and saved as HTML, the document can
be re-opened in MS Word without any loss in
style and contents. <Figure 5> is the active
document opened by MS Word.

A11A Ads

Y71 =A4A4A Ass ALY g 39

T R e)

nun> 3

docnumber="foo"
num=5 INDEX-1; 1 YDEX<~num; INDEX++
gnuplot < plot.inp
Appendix to
#docnumber#

plot.eps 1 2.3 4 4.2 M

%

A 3
R]

<Figure 5> HTML Document Opencd by MS Word

TN U

The created HTML document is processed by

the HTML parser in IDP. In As shown in
<Figure 6>, variable assignments are made by
APformula-hide component, variable enclosed
by # characters is replaced by its value, variable
num is checked by APif component, a loop is
constructed by APfor component, and a plotting
program is executed until the loop is finished.
The IDP handler controls whole process and all

the variables with the associative array format
are stored in the simple text-based database.
<Figure 7> is the resulting active document
opened by MS Word.

num> 3

‘ docnumber=":lco™ |
num=5 ‘ormula.,

Appendix

INDEX:1; INDEX<e=num; INDEX+

N Ignuplct < plot.inp FUM K]
N

for

i

|

#docnumber#
et) { A

Prot.ops 1 2.3 ¢ _
t'——&:;:.————-—- flgure_‘

H AN

d
formula tool\\ \‘\
LA

4 Y

i

LT -

..

\““
! rur;gao\‘.
\ / " iaurg tool

IDP parser

(Figure 6> HTML Document Processing Architecture

Appendix to foo

.....
201 SARDARD AR LR A SR
ik k) o

ML)

(Figure 7> The Final HTML Document

2.3 XML

As it was mentioned in the previous section,
HTML is not the best solution to document
publishing because HTML is intended mainly
for display instead of print. That's why Ex-
tensible Markup Language (XML) [W3C, 2000]
was created. XML is a simple, very flexible text
format which is originally designed to meet the
challenges of large-scale electronic publishing.
XML is also playing an increasingly important

40 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

role in the exchange of a wide variety of data
on the web and elsewhere.

XML is chosen as the main markup language
of active document in IDP. However, con-
sidering the current transitional situation that
HTML is more popular than XML, active do-
cument in HTML format should be maintained,
too. Keeping active components in HTML for-
mat alive, all active components are redefined
as XML tags. One of the advantages of XML
is that user can create as many tags as he/she
wants (See <Table 1>). With XML tags the
active document looks more logical, leaner and
legible because XML tags are self-explanatory.
<Figure 8> lists the XML active document that
is equivalent to HTML one in <Figure 3>.
Although the Extensible Stylesheet Language
(XSL) [Doug Tidwell, 2001] is usually used in
XML document, CSS can be used instead. Note
that XML tags and ordinary HTML tags are
mixed in the active document. It shows that
active document can be migrated to pure XML
anytime without tears.

In order to parse an XML document, Perl’s
XML::Parser or XML::LibXML library can be
used. However, HTML:Parser library can also be
used if XML mode of the library is turned on
as shown in <Figure 9>. Although XML mode
of the HTML::Parser library was introduced to
parse an XHTML document, it can also works
well with generally well-formed XML document.

After an XML active document is created
with simple notepad or any XMIL. editor, the
robust parser parses the document and trans-
lates it into equivalent HTML one, and the same
procedure as HTML case is processed. There-
fore, the resulting document becomes the same

HTML document illustrated in <Figure 7>.

{Table 1> XML Active Components in IDP

Name Functions

cdrom | Give a list of cdrom files from code run

edit | Edit variable values in tabular or map form

Extract data from code outputs and store

extract .
as variables

figure | Incorporate image (Postscript or PNG)

for Means for looping using C-like syntax

formula | Set or calculate variables using formulas

if Means for conditional branching

Incorporate simple text files into the output

paste document

read | Read data from files, or text databases

replace]f?l(; Svanable replacement on external ASCI

Execute shell scripts, including computer

run code jobs

? Execute PHP commands

<?xml version = “1.0"?>
<doc>
<head>
<title>IDP Test</title>
<keywords>IDP, final parameter</keywords>
<descrip>IDP - Final Parameter Cal.</descrip>
<link rel = “File - List” href = “/IDPtest.files/
filelist.xml” />
<?xml-stylesheet type = “text/css” href = “http:
//koyw/css/IDP.css”™ 7>
</head>
<body>
<formula type = “hidden”>
docnumber = “foo”
num=>5
</formula>
<p class = “MsoNormal”>Appendix to #docnumber#
</p>
<pagebreak />
<if condition = “num > 3>
<for condition = “INDEX =1 ; INDEX<= num ;
INDEX++">
<run type = “hidden™> gnuplot < plot.inp
</run>
<figure src = “plot.eps” margin-left = “1”
margin-right = “2.3" margin-top = “4”
margin-bottom = “4.2” paper = “A4” />
<pagebreak />
</for>
<fif>
</body>

</doc>

<Figure 8) Active Document in XML Format

A1 A4z FAFA 2 97

=447 AEs ALY g 41

#/usr/bin/per]l -w
use strict ;
use HTML::Parser ;

my $p = HTML:‘Parser->new(api_version => 3,
xml_mode => 1,
declaration_h => [\&dec aration, “text”],

start_h => [\&star, “tagname, attr,
attrseq, text”),

text_h => N\&text. “text”],

comment_h => [*"],

end_h => [\&end, “tagname, text”],

process.h => [\&proczss, “tagname”],
default_ h => [sub { pint shift), “text”],
)5

<Figure 3> Example of the Use of HTML: :Parser Library

24 PHP and More

PHP : Hypertext Preprocessor (PHP) [Rasmus
Lerdorf and Kevin Tatroe, 2002 is a widely-
used general-purpese scripting language that is
especially suited for web development and can
be embedded into HTML. It can do not only
server-side scripting, but also -ommand-line
scripting, client-side GUI application writing and
even scientific applications [Volter Goebbels,
20031.

One of the strongest and mcst significant
features in PHP is its support for a wide range
of databases. Therefore, PHP tag is introduced
to IDP as a new active component and IDP’s
parser is modified to handle PHP. With PHP
handling, it is possible that data ia database or
any document fragment in any network can be
inserted into active document easily, making
active docurnent more active. <Fizure 10> is a
sample active document that uses some PHP
commands to add an HTML table from MySQL
[George Reese, 2003] database.

<?xml version = “1.0"7>
<doc>
<head>
<link rel = “File-List” href = “/IDPtest.files/filelist.
xml” />
<?xml-stylesheet type = “text/css” href = “http:
//koyu/css/IDP.css”?>
</head>
<body>
<formula>PHPtableRequired = 1</formula>
<if condition = “PHPtableRequired”>
<? // insert a table to show the status of ongoing
projects
include “/users/www/htdocs/budget/inc/
connect.inc” ;
if('$year) $year = date(“Y") ;
if("$month) $month = date(“m”) ;
$depts = array (“KHNP”, “MOST”", “MOCIE",
“KNFC”) ;
echo “<table>\n<tr>\n" ;
foreach ($depts as $dp) {
$i=0;
$sql = “SELECT * FROM $atype_
table WHERE acode = ‘$project_
code’ AND tyear = ‘Pyear’ ORDER
BY no”;
$result = mysql_query($sab) ; //
number of total projects
while($data = mysql_fetch_array
($result)) {
if ($datal'dept’] == $dp) {
$teode[$dpl[++$il = $data
[‘tcode’] ;
$tname[$dpli$i] = $data
[‘tnameT ;
Sclass[$dpl[$il =
($datal'class’]) ? ($data
[class’]) : “&mbsp ; 7 ;
$period[$dpl($i] = $data
[‘period] ;
, $Spm($dpl[$il = $datal'pm] ;
}
$maxSize=$i + 2 ;
echo “<td class = ‘table®0)’ colspan

= ‘$maxSize >$dp</td>\n" ;
}
echo “</tr>\n</table>\n" ;
”>
<Aif>
</body>
</doc>

(Figure 10> Active Document with PHP Commands

42 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

To maintain backward compatibility with
Interleaf and achieve a seamless transition from
Interleaf to HTML, a translator program written
in Perl is added to IDP. It translates Interleaf
ASCII into comparable HTML. With this em-
bedded translator, user can create active docu-
ment with Interleaf software, but gets the final
document written in HTML, which can be
opened and edited by MS Word. <Figure 11>
and <Figure 12> illustrates the whole flowchart
of the document-processing part of IDP and the
details of IDP parser, respectively.

1DP
Active Handler
Document +
HTML
- XML > },DP —»{ Output
- HTML arser Document
- Interleaf

[Final MS Word Documeﬂ

<Figure 11) Flowchart of Document-Processor in IDP

Parse XML

XML or HTML or HTML

Active »l &

Document Translate
It into Yy
Structured Parse
HTML Structured

HTML

Translate 4

Interleaf It into

Active | Structured

Document HTML

{Figure 12> Details of IDP Parser

3. Web-Based Design

It is usual that the active documents are
created under Microsoft Windows and trans-
ferred to UNIX workstation, where document-
processing is made. Two operating platform

cross-over is inevitable. If a robust system
exists which creates, launches and manages all
active documents, the designer can do all design
works with convenience. That is why web-

based design system was born.

3.1 Web as a Design Tool

Web is used for design automation tool due
to its merits such as openness, usability, sca-
lability, flexibility, etc. Its Hypertext Transfer
Protocol (HTTP) is suitable in multi-platform
computing environment. In the late 1990s, KNFC
has developed a web-based design automation
system [Y. S. Park, et al., 2000]. Merging docu~
ment-oriented design system with the web~
based design system created the enterprising
architecture of IDP.

Using the proper mix-up of server side and
client side programming under the LAMP (Linux
/Apache/MySQL/PHP) environment (See <Table
2>), the design process on the web is modeled
as a design wizard style so that even a novice
designer makes the design product easily. There~
fore, when a designer interactively inputs basic
data required in a reload design analysis via a
web browser, error-free active document pre~
paration, code run, output processing and do-
cumentation are performed automatically.

(Table 2> Web Development Environment

Server-Side Client-Side
Programming Programming
oS Linux/HP-UX MS Windows
Engine
Pro Web Server (Apache) | Web Browser
! HTML,
Languages PHP, Perl, MySQL JavaScript

A11A 45

AEAH 2 Yl =

ALA AEs A2 g 43

Figures 13 through 16 show how an active
document can be created, launclied and retrieved
on the web. In order to give: designer more
freedom of editing active docuraent template on
the web, a simple WYSIWYG HTML editor is
attached, as shown in <Figwe 13>. <Figure
14> shows that designer can send the active
document created on the web or his/her own one
created by MS Word and etc. As shown in
<Figure 15> the active docwnent processing
can be launched and the resultant document can
be dewnloaded from the web (<Figure 16>).

G iges @ v AY

e, WU+ et 0 gAY
 Appendix B Inpets of YG3, Cych © for SEP Depletion

I

YOt _
PO, Y o M a0 3 e o v

! QSJIliQ TR - m Mo 2LBRED L @caN
CHINMEOnANs/Ie JERRRNALREERSE® 4ndE

o,
e
i
[¥
2 § 9022 305 Douten o o L -
~t v W W aeti1 10 F i B
i 157y SR HERR 475 1alO. LIS
e o 3
bty S A [Snon G TR AAN A ¥
Ty i acs
P sas

A€ T COMPE 42
sk

E b Soce b e

{Figure 13) Creating an Active Document on the Web

P TR T
WO RO LK) I D D K
Que-) ML o gan &N, e A

“ & R inmioanns e e L
crges” % WUDA - e D ROt §,80 4

Avmmoum-.m.c-umm..mg, ————
Mesa To send the fte, b bianis;

¢ 2 ot Qe Oy o
mim,

{Figure 14) Active Document Created ard Ready to Transfer

ha:the process slatus .., ~ MicrosofU Internel Explorer

+++ Job OgrajuQu (J0BID=Ogvanlu) subaitted on hope

Job Sumitted 11!
{yspark@hope}tep 25 > ps ~eflgrep yspark
yspark 2686 2606 B 14:47:48 ttyq2 0:00 ps -ef
yspark 2655 1052 | 14:47:47 7 0:00 sh
yspark 2656 2655 7 14:47:47? 0:00 gnutine -f XS XU XP < /ta
yspark 2690 2657 0 14:47:48 7 0:00
yspark 2657 2656 2 14:47:47 % 0:00 /twp/Dgwainlu.subfile2 -f
yspark 2687 25[!5 1 14:47:48 ttyq2 0:00 grep yspark
yspark 2606 2605 15 14:47:45 ttyq2 0:00 -csh
yspark 27657 27656 0 13:29:54 ttyad 0:00 -csh
yspark 2691 2657 3 14:47:48? 0:00 tee -a /tap/Ogwajalu.fiche

{ysparkéhopaltap 26 >

[Check the process status]

Closs } _

fot e i B

{Figure 15) Job Launched on the Web

Rinnovativn Besidn Pronessor - Mictasolt intmnnt | ptorar

P IRE BRE AP AWK SHD SRR >
Qw3 RAD D e Que g -y, 3-8 3
Tz . Bos
Gorgie~ | YigNas o MPeRBammacy G 4
< | The final active documentation for YG3 Cycle 9 was made.
Menu
. |52 oeplotion | cepieton SEPcut ram | hoatar b | s om |
@ Mastor Dotapese A'lmﬂ'lmmnlﬂlklm:w.
4 ADAE Agcozsmant Y
& gutoty Anciyavs Sow o ks e final tocinont on the Web
@ s frttuent A catation oo con b made el by foboving thessstes.
:';‘;:‘;v,nm Downfoad the above HTMLAQAL fies on your PC.
% VEP Dagleticn - Right Mouse Click (502 Figura 1)
il Save Targat As{a) (Sea Figura 2)
u - Stap 2
4 Cauistors 5;‘”.“""1_:5,;\'““
:gaw”l;b!‘:\s* Rep 2 -
o open the HTML document.
= haseazment - FleOpen (San Figure 4)
Step 4
B Fina Asseasment Bt iz f ny, and print the fis,
. . (sex Figwe 5
ol T

{Figure 16) Final Document Downloadable from the Web

3.2 Active Document Management on the Web

1 DN TR0 o]

L i S SRR

(Figure 17> Document Search Engine on the Web

44

JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Designer Linux or HP-UX Server
- Input Basic Data
-getrieve Output Web Server Database Server
ocuments B :
- Search Documents P i IDP. Platform) I‘Z[as.ter imput database
< - Active - Active Documents
Document PF
Creation ' {g
piy ‘
: A
MS Word
HP-UX Server
I Active Document J
IDP
IDP Handler
Parser
Active
Code Component
Calculations Processing &
Documentation

{Figure 18) Overall Architecture of IDP

To manage active documents, a web-database
system was built with PHP and MySQL. A
number of active document templates for va-
rious tasks and reference documents including
manuals are stored in the web-database system.
All the active documents and reference do-
cuments can be searched easily by the search
engine on the web (See <Figure 17>). It means
that user can get all required information at
user's fingertips. <Figure 18> illustrates the
overall architecture of IDP.

4. Applications

4.1 Physics Design Assessment

Physics design assessment consists of ensur-
ing that the physics characteristics of the reload
core design are supported by existing safety

analyses. This is done by IDP for the following
design items :

e Depletion calculations at short end point (SEP)
burnup and long end point (LEP) burnup

® Peaking factors and axial shapes

e Symmetric rodded calculations

¢ Fine-mesh data

¢ Reactivity coefficients

¢ Kinetics parameters

¢ Scram worth and stuck rod worth

¢ Boron dilution analysis

¢ Steamnline break analysis

® CEA drop analysis

® CEA ejection analysis

o CEA withdrawal analysis

¢ Single CEA withdrawal analysis

<Figure 19> shows the depletion calculation
result obtained from the procedures shown in

ANA A4

Mo

AEA R 97l 2484 AE3 A28 A 45

Figures 13 through 16. The siagle CEA with-
drawal analysis result is showr in <Figure 20>.
Because the physics design assessment is highly
automated with IDP, it takes about one week of
computer time for whole calctlations. Without
IDP it would take several monthis to make whole
calculation including documen :ation.

4 "k'_ SRS R JETES WL . & B W=t

SN B S S 2 5 8 G ik T 4B
G 178 N b AN WE o s Wham

(Figure 19) Result of Depletion Calculé tion at SEP Burnup

By e S o
T TSt L himnag)

<Figure 20> Result of Single CEA Wi hdrawal Analysis

42 Long-Term Fuel Management Scheme

One of the reload design tasks involves the
scoping studies over a cycle rlanning horizon.
The scoping study provides the basic data in

order for the utility to establish the long-term
fuel management scheme in safe and economic
manner. Included in the basic data are the
required uranium masses in the forthcoming
cycles, cycle lengths and burnups [Y. S. Park,
et al, 1994].

If an active document for a long-term fuel
management scheme is written and processed
by IDP, the fuel management scheme can be
made easily. <Figure 21> shows the active
document preparation on the web and <Figure
22> illustrates the created fuel management
scheme.

g Tera Fls! MaRIQement Schama Gencraiinn

iﬂ

a8

.
|

R R

(Figure 21) Active Document for Fuel Management Scheme

o pen s SOOI @A Dk BT S 4]
[) - - Zaot

{Figure 22> Result of Fuel Management Scheme Calculation

46 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

5. Conclusions

The automation using the IDP is now being
implemented for all the reload design of Korea
Standard Nuclear Power Plant (KSNP) type
PWRs. The introduction of this process will
allow large reduction in the nuclear design
efforts. Great time saving was confirmed by
showing that it can finish several-month jobs
in a few days. Since the technology is also
applicable to the non-nuclear design area like
thermal hydraulic, fuel performance analysis
and so forth, IDP can be used in all design tasks
of PWRs.

In addition to the design tasks, the IDP can
be used in all common tasks because the final
result is usually a document with text, tables
and figures, regardless of code calculation. Cri~
ticality calculations with MCNP code and mon-
thly report generation can be such examples.
Therefore, IDP will provide a platform for design
and R&D tasks of KNFC under the already
familiar web-work style environment.

References

[1} Chuck Musciano and Bill Kennedy, HTML
& XHTML : The Definitive Guide, 5" Edi-
tion, O'Reilly & Associates, Inc., USA, 2002.

(2] Doug Tidwell, XSLT, O'Reilly & Associates,
Inc., USA, 2001.

[3] Douglas B. Terry and Donald G. Baker,
“Active Tioga documents : an exploration
of two paradigms”, Electronic Publishing-
Origination, Dissemination and Design, Vol.
3, No. 2, 1990, pp. 105-122.

[4] Eric Meyer, Cascading Style Sheets : The

Definitive Guide, OReilly & Associates, Inc.,
USA, 2000.

[5] George Reese, MySQL Pocket Reference,
OReilly & Associates, Inc., USA, 2003.

[6] J.A. Brown, RP. Harris, WM. McDonald, RE.
Henderson, “The PAC Methodology for Re-
load Design Assessment”, Proc. of ANS To-
pical Meeting - Advances in Nuclear Fuel
Management II, ANS, USA, 1997.

[7] M.P. Rubin and S.G. Wagner, “Users Manual
for the Active Procedure Toolkit (APtk)”,
CE-CES-167-P Rev. 10, ABB CE Nuclear
Operations, 1999.

[8] Paul M. English and Raman Tenneti, “Inter-
leaf active documents”, Electronic Publish-
ing-Origination, Dissemination and Design,
Vol. 7, No. 2, 1994, pp. 75-87.

[9] Rasmus Lerdorf and Kevin Tatroe, Program-
ming PHP, OReilly & Associates, Inc., USA,
2002.

[10] Robert Spinrad, “Dynamic Documents”, Har-
vard University Information Technology
Quarterly, Vol. VI, No. 1, 1988, pp. 15-18.

[11] Volker Goebbels, “Scientific Applications with
PHP”, Proc. o International PHP 2003 Con-
ference ; http://www.phpconference.de/
2003/slides/business_track/goebbels_scien-
tificpdf, Frankfurt, Germany, 2003.

[12] W3C, Extensible Markup Language (XML)
1.0, W3C Recommendation, 2™ edition, 2000.

[13] Y.S. Park, et al, “Establishing the Long-
Term Fuel Management Scheme Using Point
Reactivity Model”, Journal of Nuclear Science
and Technology, Vol. 31, No. 10, 1994, pp. 1001
-1010.

[14] Y.S. Park, et al,, “Interactive Nuclear Design
Analysis Process Automation on World Wide
Web”, Proc. of PHYSOR2000, ANS, Pitts-
burgh, USA, 2000.

A1 Ads

A A58 A2 A

47

K Ap2H -

2

5 g %
Yong Soo Park is currently
a senior researcher at Korea
Nuclear Fuel Co. Ltd. He
received his M.S. and B.S.

degrees from Hanyang Uni-

versity in Seoul, Korea. H s research interests
include design automation, neural networks and
XML.

® 0| =22 204 39 99 FAsto] 1k}

A [=]
+5g

2=z 2
Jong Kyung Kim is currently
a professor at the department
of nuclear engineering, Han-
yang University. He received
his M.S. and Ph. D degrees
from University of Michigan. His research in-
terests include real-time system, computational

mathematics and so forth.

HAXM 2004 98 129 AR EHHEAESHCE

