• Title/Summary/Keyword: Wood-biomass

Search Result 408, Processing Time 0.027 seconds

Antioxidant Activity of The Residue Generated During Pervaporation of Bioethanol Produced from Lignocellulosic Biomass (목질계 바이오매스로부터 생산된 바이오에탄올 투과증발 과정에서 발생한 투과증발 잔류물의 항산화 활성)

  • Shin, Gyeong-Jin;Jeong, So-Yeon;Lee, Hong-Joo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.826-837
    • /
    • 2015
  • In this study, we produced bioethanol from the original hydrolysate obtained during oxalic acid pretreatment of lignocellulosic biomass. The bioethanol was separated and concentrated by pervaporation and the residue after pervaporation was evaluated for its antioxidant activity. Xylose ($37.28g/{\ell}$) was the major product in the original hydrolysate. The original hydrolysate contained acetic acid, furfural and total phenolic compounds (TPC) as fermentation inhibitors. Acetic acid was removed by electrodialysis (ED), and $12.21g/{\ell}$ of bioethanol was produced from ED-treated hydrolysate. The TPC of ethyl acetate extracts from the residue obtained (OA-E) during pervaporation was 86.81 mg/100 g (extract). The $IC_{50}$ values of DPPH and ABTS radical scavenging activities, and reducing power of OA-E were $0.87mg/m{\ell}$, $0.85mg/m{\ell}$, and $0.59mg/m{\ell}$, respectively. Sugar degradation products and the phenolic compounds in OA-E were determined by GC-MS.

Development of Heat Exchanger for Fermentation Heat Utilization from Waste Woody Biomass (목질계 폐바이오메스의 발효열이용 열교환기의 개발)

  • Cho, Nam-Seok;Choi, Tae-Ho;Kim, Hong-Eun;Lee, Suk-Ho;Lee, Chung-Koo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.94-104
    • /
    • 2009
  • It is urgently required to develop the production of fermentation-heat energy from the waste agricultural and forest biomass and its effective heat exchanging system for the supply of warm water to rural households and greenhouses. In this study 3 helical-type and 1 plate-type heat exchangers using 3 different waste biomasses [e.g. hardwood (HW) sawdust (100%), softwood (SW) sawdust : HW sawdust (50 : 50) and HW sawdust : grass (90 : 10)] were applied in order to find out the best heat recovery system. The heat exchanger was basically considered to improve the overall heat recovery efficiency, to minimize heat loss and to simplify manufacturing, assembling and breaking up the fermenting beds. The helical-type heat exchanger (HX-H3) installed in fermenting bed of HW sawdust : grass (90 : 10) showed relatively higher temperature profiles, in particular mid- and upper-parts than lower and surface parts during 45-day fermentation process. The maximum temperature was ranged from $40^{\circ}C$ to $65^{\circ}C$ with average $60^{\circ}C$. The water temperature of tank outlet was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. By the way plate-type one (HX-P) installed in same biomass compositional fermenting bed showed $64.5{\sim}76.5^{\circ}C$ at center part, and $43{\sim}56^{\circ}C$ and $42{\sim}58^{\circ}C$, water tank and tank outlet temperatures, respectively, during 100 day measurement. It could be concluded that the plate-type heat exchanger (HX-P) provides not only the effective heating for the rural households and greenhouses, but also having the best heat recovery performance, easy manufacturing, assembling and breaking up the systems.

An Analysis of Residents' Perception on District Heating in the Village Unit Using Forest Biomass - Focused on the Case of Forest Carbon Circulation Village in Hwacheon - (산림바이오매스 이용 마을단위 지역난방에 관한 주민 인식 분석 - 화천 산림탄소순환마을 사례를 중심으로 -)

  • Ryu, Sun-Hwa;Kim, Seong-Hak
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.339-349
    • /
    • 2020
  • This study aims to identify participating resident awareness of the improvements to forest carbon cycle villages created by the Korea Forest Service by introducing a system for district heating basedon forest biomass in mountainous areas. Hwacheon Forest Carbon Circulation village was established in Paroho-neureup village in Yuchon-ri, Hwacheon-gun between 2011 and 2013. However, its operation has not been smooth due to the increasing number of households rapidly leaving the district heating system. This study surveyed 76 households that participated in the district heating system using forest biomass in the early stages of the project. This includes households participating in the district heating system(participating households) and households not currently participating in the district heating system(withdrawal households) from September 2019. Surveys focused on the process of participating in forest carbon cycle village projects, and satisfaction in local heating and policy requirements. Of the 67 households, excepting those not allowed to participate in the survey due to death or having moved elsewhere, 36 households participated and 31 households the were in the process of leaving the village were also included. As a result, there was a significant difference between participating and exiting households in the motivation and satisfaction level of district heating. The results of this study are expects to reflect the importance of awareness of residents in the operation of the forest carbon cycle village. This will be utilized as an important dataset for improvement as a means to promote the re-entry if outgoing households. It will also help set the direction of the forest town revitalization project, utilizing forest biomass in the future.

Allometry and Canopy Dynamics of Pinus rigida, Larix leptolepis, and Quercus serrata Stands in Yangpyeong Area (양평지역 리기다소나무, 낙엽송, 졸참나무의 allometry와 임관동태 연구)

  • Kim, Jong-Sung;Son, Yowhan;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.186-197
    • /
    • 1995
  • Site-specific allometric equations relating aboveground tree component biomass and leaf area to tree diameter, basal area, sapwood cross-sectional area and sapwood volume were developed using the destructive harvesting method for Pinus rigida Mill., Larix leptolepis Gordon, and Quercus serrata Thunb. stands in Yangpyeong, Kyonggi Province. There were significantly strong correlations between aboveground tree component biomass or leaf area and diameter at breast height (DBH), basal area, sapwood area and sapwood volume. For a similar diameter tree, the three species had a similar stem wood biomass. However, carbon allocation patterns to stem bark, foliage, branch and total aboveground biomass differed among the three species. Specific leaf area and the ratio of leaf area to sapwood cross-sectional area of the three species were significantly different. Allometric equations seemed To be related to leaf habit or leaf longevity. To elucidate the effect of leaf habit or leaf longevity on allometry and canopy characteristics clearly, more intensive studies are needed.

  • PDF

Development of a Methanol Absorption System for the Removal of $H_2S$, COS, $CO_2$ in Syngas from Biomass Gasifier (바이오매스 가스화 내의 $H_2S$, COS, $CO_2$ 복합 제거를 위한 메탄올 흡수탑 개발)

  • Eom, Won Hyun;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • To make synthetic liquid fuel from biomass such as wood pellet, energy crop and so on, a biomass to liquid (BTL) process by using a biomass gasifier with Fisher-Tropsch (FT) reaction was developed. However $H_2S$, COS and $CO_2$ in syngas from biomass gasifiers resulted in a decrease of the conversion efficiency and the deactivation of the catalyst. To remove acid gases in syngas, a lab-scale methanol absorption tower was developed and the removal characteristics of acid gases were investigated. The methanol absorption tower efficiently removed $H_2S$ and COS with a removal of $CO_2$, so it could be useful process for the BTL process.

Effect of Biomass Co-firing Ratio on Operating Factors of Pulverizer in 500 MW Coal-fired Power Plant (500 MW 석탄화력 발전소에서 바이오매스 혼소율이 미분기 운전인자에 미치는 영향)

  • Geum, Jun Ho;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.28-40
    • /
    • 2022
  • As the proportion of renewable energy generation is expected to increase, public power generation businesses need to actively consider implementing the expansion of biomass mixing, In this study, the biomass co-firing rate is being changed from 0wt.% to 5.0wt.% at 500MW coal-fired power plant, measuring the major operation characteristics of the pulverizer. First, the composition analysis and grinding characteristics of lignocelluosic biomass were examined, and the effect of volume increase on dirrerential bowl pressure difference, motor current, coal spillage, outlet temperature, and internal fire count was analyzed. As the co-firing rate increased, it was confirmed that the difference in the differential bowl pressure, motor current, and coal spillage treated increased, and the outlet temperature was minimal. The number of internal fires is difficult to find a clear correlation, but it has been confirmed that it is highly likely to occur in combination with other driving factors.

  • PDF

Impact of Alkali Pretreatment to Enzymatic Hydrolysis of Cork Oak (Quercus Variabilis) (알칼리 전처리가 굴참나무의 효소 당화에 미치는 영향)

  • Yoon, Su Young;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Dissolving part of xylan and lignin in lignocellulosic biomass by base can be used as pretreatment technique. Cork oak was pretreated with sodium hydroxide solution and the pretreatment effects were evaluated with two critical factors - NaOH concentration and pretreatment temperature. Some of xylan and lignin were removed by base pretreatment. At $90^{\circ}C$ and 13% NaOH pretreatment, 22.0% of lignin and 78.8% of xylan removed by base treatment. Enzymatic hydrolysis of cork oak which was pretreated at higher temperature or concentration was further improved. After pretreatment of cork oak with 13% NaOH at $90^{\circ}C$, the conversion rate of cellulose to fermentable sugars were reached up to 91.3%. At ethanol fermentation with enzymatic hydrolysate from different pretreatment conditions, all enzymatic saccharification liquids were well fermented by Saccharomyces cerevisiae.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.

Relationship between biomass components dissolution (xylan and lignin) and enzymatic saccharification of several ammonium hydroxide soaked biomasses (초본류 3가지 암모니아수 침지 처리에서 바이오매스 성분(자이란과 리그닌) 용출 정도와 효소당화의 관계)

  • Shin, Soo-Jeong;Han, Sim-Hee;Cho, Nam-Seok;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • Corn stover, hemp woody core and tobacco stalk were treated by dilute ammonium hydroxide soaking for improving the enzymatic saccharification of cellulose and xylan to monosaccharides by commercial cellulase mixtures. As more lignin removal by dilute ammonium hydroxide impregnation led to more enzymatic saccaharification of cellulose and xylan to monosaccharides (corn stover vs tobacco stalk). There was no relationship between xylan removal by dilute ammonium hydroxide impregnation and enzymatic saccharification of polysaccharides in pretreated samples. Except corn stover, lower temperature and longer treatment ($50^{\circ}C$-6 day) was less lignin removal than higher temperature and shorter treatment ($90^{\circ}C$ 16 h). Corn stover showed the highest enzymatic saccharification of cellulose and xylan but tobacco stalk showed the lowest.

Morphology of Nanocelluloses and Micro-sized Cellulose Fibers Isolated by Acid Hydrolysis Method

  • Cho, Mi-Jung;Park, Byung-Dae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.26-32
    • /
    • 2009
  • As a part of utilizing the nanocellulose (NC) from lignocellulosic components of wood biomass, this paper reports preliminary results on the products of sulfuric acid hydrolysis. The purpose of this study was to investigate the morphology of both NC and micro-sized cellulose fiber (MCF) isolated by acid hydrolysis from commercial microcrystalline cellulose (MCC). Field emission.scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to observe the acid hydrolysis suspension, NC, and MCF. The electron microscopy observations showed that the acid hydrolysis suspension, before separation into NC and MCF by centrifugation, was composed of nano-sized NCs and micro-sized MCFs. The morphology of isolated NCs was a whisker form of rod-like NCs. Measurements of individual NCs using TEM indicated dimensions of 6.96$\pm$0.87 nm wide by 178$\pm$55 nm long. Observations of the MCFs showed that most of the MCC particles had de-fibered into relatively long fibers with a diameter of 3-9 ${\mu}m$, depending on the degree of acid hydrolysis. These results suggest that proper technologies are required to effectively realize the potentials of both NCs and MCFs.