• Title/Summary/Keyword: Wireless Multi-hop

Search Result 468, Processing Time 0.02 seconds

An Energy-Efficient Multicast Algorithm with Maximum Network Throughput in Multi-hop Wireless Networks

  • Jiang, Dingde;Xu, Zhengzheng;Li, Wenpan;Yao, Chunping;Lv, Zhihan;Li, Tao
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.713-724
    • /
    • 2016
  • Energy consumption has become a main problem of sustainable development in communication networks and how to communicate with high energy efficiency is a significant topic that researchers and network operators commonly concern. In this paper, an energy-efficient multicast algorithm in multi-hop wireless networks is proposed aiming at new generation wireless communications. Traditional multi-hop wireless network design only considers either network efficiency or minimum energy consumption of networks, but rarely the maximum energy efficiency of networks. Different from previous methods, the paper targets maximizing energy efficiency of networks. In order to get optimal energy efficiency to build network multicast, our proposed method tries to maximize network throughput and minimize networks' energy consumption by exploiting network coding and sleeping scheme. Simulation results show that the proposed algorithm has better energy efficiency and performance improvements compared with existing methods.

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

Dynamic Multi-frame Transmission Technology Using the WiMedia MAC for Multi-hop N-screen Services

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • N-screen is a promising technology to improve support for multimedia multicasting, content sharing, content mobility, media scalability, and seamless mobility. In this paper, the WiMedia distributed-MAC (D-MAC) protocol is adopted for development of a seamless N-screen wireless service. Furthermore, to provide a multi-hop, one source multi-use N-screen service through point to point streaming in a seamless D-MAC protocol, a dynamic multi-frame transmission technology is proposed. In this technology, a dynamic time slot allocation scheme and a multi-hop resource reservation scheme are combined. In the proposed dynamic time slot allocation scheme, two thresholds, a hard threshold and a soft threshold, are included to satisfy the power consumption and delay requirements. A multi-frame DRP reservation scheme is proposed to minimize end-to-end delay during the multi-hop transmissions between N-screen devices. The proposed dynamic multi-frame transmission scheme enhances N-screen performance in terms of the multi-hop link establishment success rate and link establishment time compared to the conventional WiMedia D-MAC system.

Channel Coding-Aided Multi-Hop Transmission for Throughput Enhancement

  • Hwang, Inchul;Wang, Hanho
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2016
  • Wireless communication chipsets have fixed transmission rate and communication distance. Although there are many kinds of chipsets with throughput and distance purpose, they cannot support various types of wireless applications. This paper provides theoretic research results in order to support various wireless applications requiring different throughput, delayed quality-of-service (QoS), and different communication distances by using a wireless communication chipset with fixed rate and transmission power. As a performance metric, the probability for a data frame that successfully receives at a desired receiver is adopted. Based on this probability, the average number of transmission in order to make a successful frame transmission is derived. Equations are utilized to analyze the performance of a single-hop with channel coding and a dual-hop without error correction matter transmission system. Our results revealed that single-hop transmission assisted by channel coding could extend its communication distance. However, communication range extending effect of the single-hop system was limited. Accordingly, dual-hop transmission is needed to overcome the communication distance limit of a chipset.

A Bandwidth Adaptive Path Selection Scheme in IEEE 802.16 Relay Networks

  • Lee, Sung-Hee;Ko, Young-Bae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.477-493
    • /
    • 2011
  • The IEEE 802.16 mobile multi-hop relay (MMR) task group 'j' (TGj) has introduced the multi-hop relaying concept in the IEEE 802.16 Wireless MAN, wherein a relay station (RS) is employed to improve network coverage and capacity. Several RSs can be deployed between a base station and mobile stations, and configured to form a tree-like multi-hop topology. In such architecture, we consider the problem of a path selection through which the mobile station in and outside the coverage can communicate with the base station. In this paper, we propose a new path selection algorithm that ensures more efficient distribution of resources such as bandwidth among the relaying nodes for improving the overall performance of the network. Performance of our proposed scheme is compared with the path selection algorithms based on loss rate and the shortest path algorithm. Based on the simulation results using ns-2, we show our proposal significantly improves the performance on throughput, latency and bandwidth consumption.

Analysis architecture of embedded operating systems for wireless sensor network (무선 센서 네트워크 운영체제 기술 동향 분석)

  • Kang, Jeong-Hoon;Yoo, Jun-Jae;Yoon, Myung-Hun;Lee, Myung-Soo;Lim, Ho-Jung;Lee, Min-Goo;Hwang, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.177-179
    • /
    • 2006
  • This paper presents an analysis architecture of embedded operating systems for wireless sensor network. Wireless multi-hop sensor networks use battery-operated computing and sensing device. We expect sensor networks to be deployed in an ad hoc fashion, with very high energy constraints. These characteristics of multi-hop wireless sensor networks and applications motivate an operating system that is different from traditional embedded operating system. These days new wireless sensor network embedded operating system come out with some advances compared with previous ones. The analysis is focusing on understanding differences of dominant wireless sensor network OS, such as TinyOS 2.0 with TinyOS 1.x.

  • PDF

Intra-session Network Coding for Improving Throughput in Multi-Radio Multi-Channel Multi-Hop Wireless Networks (멀티라디오/멀티채널 멀티 홉 무선 네트워크에서 처리율 향상을 위한 인트라세션 네트워크 코딩)

  • Seo, Kyeong-Su;Yoon, Won-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.29-34
    • /
    • 2011
  • We present a network coding scheme which is designed for improving throughput in multi-hop wireless network with multi-radio multi-channel. The co-channel interference and unreliability of wireless transmissions cause the wireless network to reduce throughput. In wireless network, multi-radio multi-channel technology shows benefit to cut down channel interferences and contentions. And network coding can reduce the complexity of scheduling and improve throughput by increasing usage of links in wireless network. In this paper, we propose a method of channel assignment and transmission scheduling in intra-session network coding that efficiently improve throughput for multi-hop wireless network by using mathematical modeling and linear programming. Moreover, we evaluate the performance of the intra-session network coding scheme by using AMPL with CPLEX. The simulation results show that intra-session network coding can achieve better throughput than traditional routing.

Localized Algorithm to Improve Connectivity and Topological Resilience of Multi-hop Wireless Networks

  • Kim, Tae-Hoon;Tipper, David;Krishnamurthy, Prashant
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.69-81
    • /
    • 2013
  • Maintaining connectivity is essential in multi-hop wireless networks since the network topology cannot be pre-determined due to mobility and environmental effects. To maintain the connectivity, a critical point in the network topology should be identified where the critical point is the link or node that partitions the network when it fails. In this paper, we propose a new critical point identification algorithm and also present numerical results that compare the critical points of the network and H-hop sub-network illustrating how effectively sub-network information can detect the network-wide critical points. Then, we propose two localized topological control resilient schemes that can be applied to both global and local H-hop sub-network critical points to improve the network connectivity and the network resilience. Numerical studies to evaluate the proposed schemes under node and link failure network conditions show that our proposed resilient schemes increase the probability of the network being connected in variety of link and node failure conditions.

Performance Evaluation of Multi-Hop Communication Based on a Mobile Multi-Robot System in a Subterranean Laneway

  • Liu, Qing-Ling;Oh, Duk-Hwan
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.471-482
    • /
    • 2012
  • For disaster exploration and surveillance application, this paper aims to present a novel application of a multi-robot agent based on WSN and to evaluate a multi-hop communication caused by the robotics correspondingly, which are used in the uncertain and unknown subterranean tunnel. A Primary-Scout Multi-Robot System (PS-MRS) was proposed. A chain topology in a subterranean environment was implemented using a trimmed ZigBee2006 protocol stack to build the multi-hop communication network. The ZigBee IC-CC2530 modular circuit was adapted by mounting it on the PS-MRS. A physical experiment based on the strategy of PS-MRS was used in this paper to evaluate the efficiency of multi-hop communication and to realize the delivery of data packets in an unknown and uncertain underground laboratory environment.

Performance Analysis of Multi-hop Wireless Networks under Different Hopping Strategies with Spatial Diversity

  • Han, Hu;Zhu, Hongbo;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2548-2566
    • /
    • 2012
  • This paper derives two main end-to-end performance metrics, namely the spatial capacity density and the average end-to-end delay of the multi-hop wireless ad hoc networks with multi-antenna communications. Based on the closed-form expressions of these performance metrics, three hopping strategies, i.e., the closest neighbor, the furthest neighbor and the randomly selected neighbor hopping strategies have been investigated. This formulation provides insights into the relations among node density, diversity gains, number of hops and some other network design parameters which jointly determine network performances, and a method of choosing the best hopping strategy which can be formulated from a network design perspective.