• Title/Summary/Keyword: Winding Analysis

Search Result 801, Processing Time 0.027 seconds

Characteristic Analysis of Synchronous Reluctance Motor Related to Slot Numbers and winding using Coupled Preisach Model & FEM (프라이자흐 모델이 결합된 유한요소법을 이용한 슬롯수, 권선법에 따른 동기형 릴럭턴스전동기의 특성해석)

  • Byun, Chan-Geun;Jang, Young-Jin;Lee, Mi-Jung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1012-1014
    • /
    • 2003
  • This paper deals with the characteristic Analysis of synchronous reluctance motors (SynRMs) using coupled Preisach modeling & FEM. The focus of this paper is the characteristic Analysis relative to Inductances and losses on the basis of stator slot number, winding in SynRMs. The coupled Finite Elements Analysis (FEA) & Preisach model has been used to evaluate the nonlinear solution. Comparisons arc given with characteristics of normal distributed winding SynRM and those according to stator slot number, winding in concentrated winding SynRM, respectively.

  • PDF

A Characteristics of SPIM with Power Conversions of Auxiliary Winding (보조권선의 전력제어에 따른 단상유도전동기의 특성비교)

  • Park, Su-Kang;Seo, Kang-Sung;Baek, Hyung-Lae;Cho, Geum-Bae;Lim, Yang-Suo;Lee, Seong-Kil;Kim, Dong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1149-1151
    • /
    • 2002
  • In this paper, an auxiliary winding driving system of single-phase induction motors is described. Starting charateristics variations are obtained by controlling the auxiliary winding voltage magnitude and phase angle, while the motor's main winding is directly connected to the local utility. A variable auxiliary winding voltage phase angle is shown to yield significant torque control, providing starting and braking torque. The analysis includes the determination of the relationship between the auxiliary winding voltage phase angle and the phase angle difference between the main and auxiliary winding current. The paper proposed for adjusting an auxiliary winding voltage magnitude and phase angle. Experimental results of motor's starting characteristics with using the DC-AMP and PWM inverter for auxiliary winding power supply are shown. The drive is tested using a dynamometer to experimentally verify the results of the theory.

  • PDF

Analysis of Insulation Characteristics for High-voltage Motor Stator Winding using Insulation Diagnostic Test (절연진단법을 이용한 고전압전동기 고정자권선의 절연특성분석)

  • Oh, Bong-Keun;Kang, Hyun-Goo;Kim, Hyun-Il;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.404-405
    • /
    • 2009
  • Insulation diagnostic tests for high voltage motor stator winding were conducted to analyze the insulation characteristics. Test motors were manufactured same factory and year(1996). Insulation characteristics of moisture winding are different from those of deteriorative winding. Insulation resistance and disscipation factor test results are sensitive to moisture winding. AC current, disscipation factor tip-up and PD test results are sensitive to deteriorative winding. Also, Capacitance value for stator winding insulation material has characteristic of increasing in moisture winding.

  • PDF

Recovery Characteristics of a Flux-lock Type HTSC Fault Current Limiter after Fault Removal (자속구속형 고온초전도 사고전류 제한기의 사고제거 후 회복특성)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.812-815
    • /
    • 2007
  • To apply the superconducting fault current limiter(SFCL) into a power system, the analysis for its recovery characteristics as well as the consideration for its cooperation with other protecting machine such as a circuit breaker is required. The recovery characteristics of the flux-lock type SFCL like its current limiting characteristics are dependent on the winding direction of two coils. In this paper, the experiments of the current limiting and the recovery characteristics of the flux-lock type SFCL with YBCO thin film were performed. From the analysis on the experimental results due to the winding direction of two coils, the limited fault current in case of the additive polarity winding was observed to be lower than that for the case of the subtractive polarity winding. In addition, the recovery time was found to be faster in case of the additive polarity winding compared to the subtractive polarity winding.

Harmonic Winding Factors and MMF Analysis for Five-phase Fractional-slot Concentrated Winding PMSM

  • Kang, Huilin;Zhou, Libing;Wang, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • To enhance torque density by harmonic current injection, optimal slot/pole combinations for five-phase permanent magnet synchronous motors (PMSM) with fractional-slot concentrated windings (FSCW) are chosen. The synchronous and the third harmonic winding factors are calculated for a series of slot/pole combinations. Two five-phase PMSM, with general FSCW (GFSCW) and modular stator FSCW (MFSCW), are analyzed and compared in detail, including the stator structures, star of slots diagrams, and MMF harmonic analysis based on the winding function theory. The analytical results are verified by finite element method, the torque characteristics and phase back-EMF are also taken into considerations. Results show that the MFSCW PMSM can produce higher average torque, while characterized by more MMF harmonic contents and larger ripple torque.

Simplified 2-D Analytical Model for Winding Loss Analysis of Flyback Transformers

  • Zhang, Junming;Yuan, Wei;Zeng, Hulong;Qian, Zhaoming
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.960-973
    • /
    • 2012
  • The winding loss analysis of a flyback transformer is difficult and ambiguous because the primary side current and the secondary side current differs both in shape and phase, especially for DCM (Discontinuous Conduction Mode) operation. Meanwhile, the fringing field caused by the air gaps further makes the traditional 1-D loss analysis model not directly applicable. The paper gives a thorough investigation into the phase shift of winding currents, which indicates that the phase shift of the high order harmonics is still close to $180^{\circ}$ out-of-phase. Based on the analysis, a simplified 2-D winding loss analytical model for flyback transformers considering the effects of low order harmonics is proposed. By neglecting the y components of the fringing field, the proposed model has an acceptable accuracy and a simple form that is similar to the conventional 1-D model. The power loss calculated with the proposed analysis model is verified by FEA (Finite Element Analysis) simulations and experimental results.

Improvement of Current Limiting and Recovery Characteristics in Series Connection Type SFCL with Added Third Winding (3차권선이 추가된 직렬연결형 초전도한류기의 전류제한 및 회복 특성 향상)

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.62-68
    • /
    • 2014
  • The series connection type superconducting fault current limiter (SFCL) with added third winding, which was magnetically coupled in one iron core, was proposed. The proposed SFCL was expected to be more improved by just adding third winding into the conventional series connection type SFCL with two coils. To analyze the contribution of the third winding for the current limiting and the recovery characteristics of the SFCL, the short-circuit tests for the series connection type SFCL with the added third winding were performed together with the analysis on its electrical equivalent circuit. From the comparative analysis on the amplitude of the limited fault current and the power burden of the high-TC superconducting (HTSC) element comprising this SFCL, the improved current limiting and recovery characteristics of the series connection type SFCL using the third winding could be confirmed.

Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition (Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상)

  • Kim, Hee-Woon;Yoon, Jin-Gyu;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

Fault Current Waveform Analysis of a Flux-Lock Type SFCL According to LC Resonance Condition of Third Winding

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-217
    • /
    • 2008
  • The flux-lock type superconducting fault current limiter(SFCL) can apply the magnetic field into the high-$T_C$ superconducting(HTSC) element by adopting the magnetic field coil in its third winding. To apply the magnetic field into the HTSC element effectively, the capacitor for LC resonance is connected in series with the magnetic field coil. However, the current waveform of third winding for the application of the magnetic field is affected by the LC resonance condition for the frequency of the source voltage and can affect the waveform of the limited fault current. In this paper, the current waveform of the third winding in the flux-lock type SFCL according to LC resonance condition during a fault period was analyzed. From the differential equation for its electrical circuit, the current equation of the third winding was derived and described with the natural frequency and the damping ratio as design parameters. Through the analysis according to the design parameters of the third winding, the waveform of the limited fault current was confirmed to be influenced by the current waveform of the third winding and the design condition for the stable fault current limiting operation of this SFCL was obtained.

Performance Comparison of the Railway Traction IPM Motors between Concentrated Winding and Distributed Winding

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.118-123
    • /
    • 2013
  • This paper presents performance comparison between concentrated winding and distributed winding of IPMSM (Interior Permanent Magnet Synchronous Motors) which is recently used for light-weight railway applications. Motors are designed on various schemes and analyzed by using FEM (Finite Element Method) instead of EMCNM (Equivalent Magnetic Circuit Network Method) in order to take into account saturation and non-linear magnetic property. The overall performance such as torque, torque ripple, losses, demagnetization, efficiency, power density and so on are investigated in detail at the rated and maximum operating speed. The results of the analysis found that both concentrated and distributed winding IPMSMs are promising candidates for high power railway traction motor.