• Title/Summary/Keyword: Wind turbine blade and tower

Search Result 76, Processing Time 0.022 seconds

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.511-524
    • /
    • 2020
  • Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

A Study of Natural Frequency in Steel Wind Turbine Tower according to the RNA Model (강재 풍력 터빈 타워의 상부구조 모델링 방법에 따른 고유진동수 특성에 대한 고찰)

  • Lee, Yun-Woo;Choi, Jun-Ho;Kang, Sung-Yong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.37-42
    • /
    • 2014
  • Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

Comparison of simplified model and FEM model in coupled analysis of floating wind turbine

  • Kim, Byoung Wan;Hong, Sa Young;Sung, Hong Gun;Hong, Seok Won
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.221-243
    • /
    • 2015
  • This paper compares simplified and finite element method (FEM) models for tower and blade in dynamic coupled analysis of floating wind turbine. A SPAR type wind turbine with catenary mooring lines is considered in numerical analysis. Floating body equation is derived using boundary element method (BEM) and convolution. Equations for mooring line, tower and blade are formulated with theories of catenary, elastic beam and aerodynamic rotating beam, respectively and FEM is applied in the formulation. By combining the equations, coupled solutions are calculated. Tower or blade may be assumed rigid or lumped body for simplicity in modeling. By comparing floating body motions, mooring line tensions and tower stresses with the simple model and original FEM model, the effect of including or neglecting elastic, rotating and aerodynamic behavior of tower and blade is discussed.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Wind Turbine Simulator Implementation Considering Tower Effect of Rotor Blade (풍력발전기 회전자 블레이드의 타워효과를 고려한 풍차 시뮬레이터의 구현)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.247-250
    • /
    • 2003
  • To get more realistic wind turbine torque characteristic, it is important to consider many parameters about wind turbine system. One of them is the tower effect which is occurred when a blade is bypassing the wind turbine tower and influences shaft torque fluctuation. In this paper, to emulate the similar torque performance of wind turbine, the wind turbine simulation and experiment with torque fluctuation by blade tower effect are implemented and verified. The simulation model is based on MATLAB Simulink.

  • PDF

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.