DOI QR코드

DOI QR Code

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T. (Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Xu, L. (Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Ge, Y.J. (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2017.05.25
  • Accepted : 2017.08.12
  • Published : 2017.12.25

Abstract

In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Arani, M.F.M. and Mohamed, A.R.I. (2015), "Analysis and impacts of implementing droop control in DFIG-based wind turbines on Microgrid/Weak-Grid stability", IEEE T. Power Syst., 30(1),385-396. https://doi.org/10.1109/TPWRS.2014.2321287
  2. Ding, H., Liu, Y., Zhang, P. and Le, C. (2015), "Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay", Ocean Eng., 103, 114-122. https://doi.org/10.1016/j.oceaneng.2015.04.068
  3. Djojodihardjo, H., Hamid, M.F.A., Jaafar, A.A., et al. (2013), "Computational study on the aerodynamic performance of wind turbine airfoil fitted with Coanda", Renew. Energ., 2013.
  4. GB/T 20319-2006. (2006), "Code for acceptance of wind turbines generator systems", Beijing: Chinese machinery industry press.
  5. GB50009-2012. (2012), "Load code for the design of building structures", Beijing. China building industry press.
  6. Germanischer Lloyd. (2010), Guideline for the certification of wind turbines, Hamburg: Germanischer Lloyd.
  7. Han, Y., Le, C., Ding, H., Cheng, Z. and Zhang, P. (2017), "Stability and dynamic response analysis of a submerged tension leg platform for offshore wind turbines", Ocean Eng., 129, 68-82. https://doi.org/10.1016/j.oceaneng.2016.10.048
  8. Hemmatpour, M.H., Mohammadian, M. and Gharaveisi, A.A. (2016), "Simple and efficient method for steady-state voltage stability analysis of islanded microgrids with considering wind turbine generation and frequency deviation", Iet Generation Transmission & Distribution, 10(7), 1691-1702. https://doi.org/10.1049/iet-gtd.2015.1047
  9. Jeong, M.S., Kim, S.W., Lee, I., Yoo, S.J. and Park, K.C. (2013), "The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade", Renew. Energ., 60, 256-268. https://doi.org/10.1016/j.renene.2013.05.014
  10. Ke, S.T., Yu, W., Wang, T.G., Ge, Y.J., Tamura, Y. (2016), "The effect of blade positions on the aerodynamic performances of wind turbine system", Wind Struct., 24(3), 205-221. https://doi.org/10.12989/WAS.2017.24.3.205
  11. Ke, S.T., Yu, W., Wang, T.G., Zhao, L. and Ge, Y.J. (2016), "Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade", Wind Struct., 23(6), 559-575. https://doi.org/10.12989/was.2016.23.6.559
  12. Ke, S.T., Yu, W. and Wang, T.G. (2016), "Impact for blade position on aerodynamic performance of wind turbine system under stopped status", J. Zhejiang University (Engineering Science),50(7), 1230-1238. (In Chinese)
  13. Laan, M.P., Sorensen, N.N., Rethore, P.E. and Mann, J. (2015), "An improved $k-{\epsilon}$ model applied to a wind turbine wake in atmospheric turbulence", Wind Energy, 18(5), 889-907. https://doi.org/10.1002/we.1736
  14. Laan, M.P., Sorensen, N.N., Rethore, P.E. and Mann, J. (2015), "The $k-{\epsilon}-fP$ model applied to double wind turbine wakes using different actuator disk force methods", Wind Energy, 18(12),2223-2240. https://doi.org/10.1002/we.1816
  15. Lee, H.G., Kang, M.G. and Park, J. (2015), "Fatigue failure of a composite wind turbine blade at its root end", Compos. Struct., 133, 878-885. https://doi.org/10.1016/j.compstruct.2015.08.010
  16. Li, B., Wen, H.T. and Gong, Z.Y. (2017), "The wind turbine tiwer rum wind-induced response analysis and wind vibration control research", Eng. Mech. (In Chinese)
  17. Li, Q., Maeda, T., Kamada, Y., et al. (2016), "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)", Energy, 106, 443-452. https://doi.org/10.1016/j.energy.2016.03.089
  18. Madsen, S., Andersen, L.V. and Ibsen, L.B. (2013), "Numerical buckling analysis of large suction caissons for wind turbines on deep water", Eng. Struct., 57(4), 443-452. https://doi.org/10.1016/j.engstruct.2013.09.041
  19. Mawer, B. and Kalumba, D. (2016), "Stability of wind turbine foundations - accounting for gapping and eccentric loading", J. South African Institution of Civil Engineering.
  20. Plaza, J., Abasolo, M., Coria, I., et al. (2015), "A new finite element approach for the analysis of slewing bearings in wind turbine generators using superelement techniques", Meccanica, 50(6),1623-1633. https://doi.org/10.1007/s11012-015-0110-7
  21. Shaltout, M. (2015), "Stability of wind turbine switching control", Int. J. Control, 88(1), 193-203. https://doi.org/10.1080/00207179.2014.942883
  22. Shilin, Z., Deyuan, L., Xiaohua, H., et al. (2010), "Buckling analysis of wind turbine tower under eccentric loading", Acta Energiae solaris sinica, 31(7), 901-906. (In Chinese)
  23. Skrzypinski, W. and Gaunaa, M. (2015), "Wind turbine blade vibration at standstill conditions-the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil", Wind Energy, 18(3), 515-527. https://doi.org/10.1002/we.1712
  24. Sun, L., Huo, Z. and Yan, S. (2015), "Numerical Studies on the Working Mechanism and Bearing Capacity of Bucket Foundations for Offshore Wind Turbines", J. Coastal Res., 73, 478-482. https://doi.org/10.2112/SI73-084.1
  25. Tempel, J.V.D. (2006), "Design of support structures for offshore wind turbines", Netherlands: Delft University of Technology.
  26. Wang, H. and Cheng, X. (2015), "Undrained bearing capacity of suction caissons for offshore wind turbine foundations by numerical limit analysis", Mar. Georesour. Geotech., 34(3),150429065242005.

Cited by

  1. Flutter study of flapwise bend-twist coupled composite wind turbine blades vol.32, pp.3, 2021, https://doi.org/10.12989/was.2021.32.3.267