DOI QR코드

DOI QR Code

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur (Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals) ;
  • Alam, Md. Mahbub (Institute for Turbulence-Noise-Vibration Interaction and Control, Harbin Institute of Technology (Shenzhen)) ;
  • Alhems, Luai M.
  • Received : 2019.11.14
  • Accepted : 2020.01.26
  • Published : 2020.05.25

Abstract

Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

Keywords

Acknowledgement

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Grant number SB181005.

References

  1. Abdallah, I., Natarajan, A. and Sorensen, J. (2015), "Impact of uncertainty in airfoil characteristics on wind turbine extreme loads", Renew. Energy, 75, 283-300. https://doi.org/10.1016/j.renene.2014.10.009.
  2. Alam, M.M., Rehman S., Meyer J. and Al-Hadhrami L.M. (2014), "Extraction of the inherent nature of wind using wavelets", Energy Sustain. Develop., 22, 34-47. http://hdl.handle.net/2263/44604. https://doi.org/10.1016/j.esd.2014.02.004
  3. Alam, M.M., Rehman, S., Meyer, J.P. and Al-Hadhrami, L.M. (2011), "Review of 600-kW to 2500-kW sized wind turbines and optimization of hub height for maximum wind energy yield realization", Renew. Sustain. Energy Rev., 15, 3839-3849. https://doi.org/10.1016/j.rser.2011.07.004
  4. Alam, M.M., Zhou, Y., Yang, H.X., Guo, H. and Mi, J. (2010), "The ultra-low Reynolds number airfoil wake", Experim. Fluids, 48, 81-103. https://doi.org/10.1007/s00348-009-0713-7.
  5. Asghar, Z. and Requena, G. (2014), "Three dimensional post-mortem study of damage after compression of cast Al-Si alloys", Mater. Sci. Eng. A., 591, 136-143. https://doi.org/10.1016/j.msea.2013.10.067.
  6. Bagiorgas H.S., Mihalakakou G., Rehman S. and Al-Hadhrami L.M. (2013). "Wind power potential assessment for three buoys data collection stations in Ionian Sea using weibull distribution function", Int. J. Green Energy, 13(7), 703-714. https://doi.org/10.1080/15435075.2014.896258.
  7. Bagiorgas H.S., Mihalakakou G., Rehman S. and Al-Hadhrami L.M. (2012), "Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas, J. Earth Syst. Sci., 121(4), 975-987. https://doi.org/10.1007/s12040-012-0203-9
  8. Bagiorgas H.S., Mihalakakou G., Rehman S. and Al-Hadhrami L.M. (2011), "Weibull parameters estimation using four different methods and most energy carrying wind speed analysis", Int. J. Green Energy, 8(5), 529 - 554. https://doi.org/10.1080/15435075.2011.588767
  9. Bagiorgas H.S., Mihalakakou G., Rehman S., Al-Hadhrami L.M. (2012), "Wind power potential assessment for seven buoys Data collection stations in Aegean Sea using weibull distribution function", J. Renew. Sustain. Energy, 4(1), 013119-013134. https://doi.org/10.1063/1.3688030
  10. Baseer M.A., Meyer J.P., Alam Md. M. and Rehman S. (2015), "Wind speed and power characteristics for Jubail industrial city, Saudi Arabia", Renew. Sustain. Energy Rev. 52, 1193-1204. https://doi.org/10.1016/j.rser.2015.07.109.
  11. Baseer M.A., Meyer J.P., Rehman S. and Alam Md. M. (2017), "Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters", Renew. Energy, 102, 35-49. http://dx.doi.org/10.1016/j.renene.2016.10.040.
  12. Baseer M.A., Meyer J.P., Rehman S., Alam M.M., Al-Hadhrami L.M. and Lashin A. (2016), "Performance evaluation of cup-anemometers and wind speed characteristics analysis", Renew. Energy, 86(2), 733-744. https://doi.org/10.1016/j.renene.2015.08.062
  13. Bassyouni M., Saud A.G., Javaid U., Awais M., Rehman S., Abdel-Hamid S.M.S., Abdel-Aziz M.H., Abouel-Kasem A. and Shafeek H. (2015), "Assessment and analysis of wind power resource using weibull parameters", Energ. Explor. Exploit. 33(1), 105-122. https://doi.org/10.1260%2F0144-5987.33.1.105. https://doi.org/10.1260/0144-5987.33.1.105
  14. Bir, G.S. (2005), "User's guide to BModes (Software for computing rotating beam coupled modes)", Technical Report NREL/TP-500-39133TRN: US200601%%875.
  15. Bjornson, F.O., Wang, A.I. and Arisholm, E. (2009), "Improving the effectiveness of root cause analysis in post mortem analysis: a controlled experiment", Inf. Softw. Technol. 51, 150-161. https://doi.org/10.1016/j.infsof.2008.02.003
  16. Bossanyi, E. (2003), "GH bladed theory manual", Garrad Hassan and Partners Ltd. Bristol. U.K.
  17. Burton, T., Jenkins, N., Sharpe, D. and Bossanyi E. (2001). "Wind Energy Handbook", John Wiley & Sons.
  18. Carcedo, J., Fernandes I., Ortiz A., Carrascal I.A., Delgado F., Ortiz F. and Arroyo A. (2014), "Post-mortem estimation of temperature distribution on a power transformer: physicochemical and mechanical approaches", Appl. Therm. Eng. 70, 935-943. https://doi.org/10.1016/j.applthermaleng.2014.06.003
  19. Chehouri, A., Younes, R., Ilinca, A., and Perron, J. (2015), "Review of performance optimization techniques applied to wind turbines", Appl. Energy, 142, 361-388. https://doi.org/10.1016/j.apenergy.2014.12.043.
  20. Chen, X. (2018), "Fracture of wind turbine blades in operation-Part I: A comprehensive forensic investigation", Wind Energy1-18. https://doi.org/10.1002/we.2212.
  21. Chen, X. and Xu, J.Z. (2016), "Structural failure analysis of wind turbines impacted by super typhoon Usagi", Eng. Fail. Analy., 60, 391-404. https://doi.org/10.1016/j.engfailanal.2015.11.028.
  22. Chen, X., Zhao, W., Zhao, X.L., and Xu, J.Z., (2014). "Preliminary failure investigation of a 52.3 m glass/epoxy composite wind turbine blade", Engineering Failure Analysis, 44, 345-350. https://doi.org/10.1016/j.engfailanal.2014.05.024
  23. Chou, J.S. and Tu, W.T. (2011), "Failure analysis and risk management of a collapsed large wind turbine tower", Eng. Fail. Anal. 18, 295-313. https://doi.org/10.1016/j.engfailanal.2010.09.008.
  24. Chou, J.S., Chiu, C.K., Huang, I.K. and Chi, K.N. (2013), "Failure analysis of wind turbine blade under critical wind loads", Eng. Fail. Analy., 27, 99-118. https://doi.org/10.1016/j.engfailanal.2012.08.002
  25. Collier, B., DeMarco, T. and Fearey, P. (1996), "A defined process for project postmortem review", IEEE Software, 13(4), 65-72. https://doi.org/10.1109/52.526833.
  26. Crabtree, C.J., Feng, Y., Tavner, P.J. (2010), "Detecting Incipient wind turbine gearbox ailure: A signal analysis ethod for on-line condition monitoring", In Proceedings of European Wind Energy Conference (EWEC 2010), Warsaw, Poland.
  27. Dai K., Wang Y., Huang Y., Zhu W. and Xu Y. (2017), "Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers", Wind Energy, 20(10), 1687-1710. https://doi.org/10.1002/we.2117.
  28. Dimitrov, N., Natarajan, A. and Kelly, M. (2015), "Model of wind shear conditional on turbulence and its impact on wind turbine loads", Wind Energy, 18, 1917-1931. https://doi.org/10.1002/we.1797.
  29. Dingsoyr, T. (2005), "Postmortem reviews: purpose and approaches in software engineering", Inf. Softw. Technol. 47, 293-303. https://doi.org/10.1016/j.infsof.2004.08.008.
  30. Dvorak, P. (2012), "Can intelligent blades sense the wind and adapt", Windpower Eng. Develop.
  31. Eder, M.A. and Bitsche R.D. (2015), "Fracture analysis of adhesive joints in wind turbine blades", Wind Energy, 18, 1007-1022. https://doi.org/10.1002/we.1744.
  32. Gacougnolle, J.L., Castagnet, S. and Werth, M. (2006), "Post-mortem analysis of failure in polyvinylidene fluoride pipes tested under constant pressure in the slow crack growth regime", Eng. Fail. Anal. 13, 96-109. https://doi.org/10.1016/j.engfailanal.2004.10.007.
  33. Ghaemmaghami, A., Kianoush, R. and Yuan X.X. (2012), "Numerical modeling of dynamic behavior of annular tuned liquid dampers for applications in wind towers", Comput. Aid. Civil Infrastruct. Eng., 28(1), 38-51. https://doi.org/10.1111/j.1467-8667.2012.00772.x.
  34. Global Wind Report (2017), "Annual market update (GWEC - 2017)", http://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf (Accessed on 3rd March 2018).
  35. Guo, X., Guan, Z.D., Nie, H.C., Tan, R.M. and Li, Z.S. (2017), "Damage tolerance analysis of adhesively bonded composite single lap joints containing a debond flaw", J. Adhes., 93(3), 216-234. https://doi.org/10.1080/00218464.2015.1066677
  36. Hahn, B., Durstewitz, M.and Rohrig, K. (2007), "Reliability of wind turbines", Wind Energy, Springer, Berlin, Heidelberg.
  37. Hayat, K., De Lecea, A.G.M., Moriones, C.D. and Ha, S.K. (2014), "Flutter performance of bend-twist coupled large-scale wind turbine blades", J. Sound Vib., 370, 149-162. https://doi.org/10.1016/j.jsv.2016.01.032.
  38. Himri Y., Rehman S., Himri S., Mohammadi K., Sahin B. and Malik A.S. (2016), "Investigation of wind resources in Timimoun, Algeria", Wind Eng., 40(3), 250-260. https://doi.org/10.1177%2F0309524X16645483. https://doi.org/10.1177/0309524X16645483
  39. Himri Y., Rehman S., Setiawan A.A. and Himri S. (2012), "Wind energy for rural areas of Algeria", Renew. Sustain. Energy Rev., 16(5), 2381-2385. https://doi.org/10.1016/j.rser.2012.01.055.
  40. Ishihara, T., Yamaguchi, A., Takahara, K., Mekaru, T. and Matsuura, S. (2005), "An analysis of damaged wind turbines by typhoon Maemi in 2003", The 6th Asia-Pacific Conference on Wind Engineering (APCWE-VI), Seoul, Korea, September.
  41. Islam Md. S., Mohandes M. and Rehman S. (2017), "Vertical extrapolation of wind speed using artificial neural network hybrid system", Neural Comput. Appli., 28(8), 2351-2361. https://doi.org/10.1007/s00521-016-2373-x.
  42. Jafari, S. and Kosasih, B. (2014), "Flow analysis of shrouded small wind turbine with a simple frustum diffuser with computational fluid dynamics simulations", J. Wind Eng. Ind. Aerod., 125, 102-110. https://doi.org/10.1016/j.jweia.2013.12.001.
  43. Jensen, F.M., Falzon, B.G., Ankerson, J. and Stang, H. (2006), "Structural testing and numerical simulation of a 34 m composite wind turbine blade", Compos. Struct., 76, 52-61. https://doi.org/10.1016/j.compstruct.2006.06.008.
  44. Jensen, F.M., Puri, A.S., Dear, J.P., Branner, K. and Morris, A. (2011), "Investigating the impact of non-linear geometrical effects on wind turbine blades - part 1: current status of design and test methods and future challenges in design optimization", Wind Energy 14, 239-254. https://doi.org/10.1002/we.415.
  45. Jensen, F.M., Weaver, P.M., Cecchini, L.S., Stang, H. and Nielsen, R.F. (2012), "The Brazier effect in wind turbine blades and its influence on design", Wind Energy. 15, 319-333. https://doi.org/10.1002/we.473.
  46. Jonkman, J.M. and Buhl, M.L. (2005), "Jr. FAST User's Guide", National Renew. Energy Lab. Golden, CO.
  47. Karthikeyan, N., Kalidasa, M.K., Arun, K.S. and Rajakumar, S. (2015), "Review of aerodynamic developments on small horizontal axis wind turbine blade", Renew. Sustain. Energy Rev., 42, 801-822. https://doi.org/10.1016/j.rser.2014.10.086.
  48. Katsanos, E.I., Thons, S. and Georgakis, C.T. (2016), "Wind turbines and seismic hazard: a state-of-the-art review", Wind Energy, https://doi.org/10.1002/we.1968.
  49. Ke, S.T., Ge, Y.J., Wang, T.G., Cao, J.F. and Tamura, Y. (2015), "Wind field simulation and wind-induced responses of large wind turbine tower-blade coupled structure", Struct. Design Tall Spec. Build., 24(8), 571-590. https://doi.org/10.1002/tal.1200.
  50. Kenna, A. and Basu, B. (2015), "A finite element model for pre-stressed or post-tensioned concrete wind turbine towers", Wind Energy, 18(9), 1593-1610. https://doi.org/10.1002/we.1778.
  51. Kensche, C.W. (2006), "Fatigue of composites for wind turbines", Int. J. Fatigue, 28(10), 1363-1374. https://doi.org/10.1016/j.ijfatigue.2006.02.040.
  52. Khan S. and Rehman S. (2013), "Iterative non-deterministic algorithms in on-shore wind farm design: A brief survey", Renew. Sustain. Energy Rev., 19, 370-384. https://doi.org/10.1016/j.rser.2012.11.040.
  53. Kim, K.S., Yoo, J.S., Yi, Y.M. and Kim, C.G. (2006), "Failure mode and strength of uni-directional composite single lap bonded joints with different bonding methods", Compos. Struct., 72 (4), 477-485. https://doi.org/10.1016/j.compstruct.2005.01.023.
  54. Kim, S., Alam, M.M. and Maiti, D.K. (2018), "Wake and suppression of flow-induced vibration of a circular cylinder", Ocean Eng., 151, 298-307. https://doi.org/10.1016/j.oceaneng.2018.01.043.
  55. Kress C., Chokani, N. and Abhari, R. (2015), "Downwind wind turbine yaw stability and performance", Renew. Energy, 83, 1157-1165. https://doi.org/10.1016/j.renene.2015.05.040.
  56. Lacalle, R., Cicero, S., Alvarez, J.A., Cicero, R. and Madrazo, V. (2011), "On the analysis of the causes of cracking in a wind tower", Eng. Fail. Analy., 18(7), 1698-1710. https://doi.org/10.1016/j.engfailanal.2011.02.012.
  57. Larsen, T.J. and Hansen, A.M. (2007), "How 2 HAWC2", The user's manual, Technical University of Denmark.
  58. Le, B. and Andrews, J. (2015), "Modelling wind turbine degradation and maintenance", Wind Energy, 19(4), 571-591. https://doi.org/10.1002/we.1851
  59. Leithead, W. and Chatzopoulos, A. (2010), "Reducing tower fatigue loads by a co-ordinated control of the Supergen 2MW exemplar wind turbine", The Proceedings of 3rd European Academy of Wind Energy (EAWE) Conference, Heraklion, Greece, June.
  60. Leithead, W., Neilson, V. and Dominguez, S. (2009), "Alleviation of unbalanced rotor loads by single blade controllers", The Proceedings of European Wind Energy Conference (EWEC), Marseilles, France, March.
  61. Lin Y., Tu L., Liu H. and Li, W. (2016), "Fault analysis of wind turbines in China", Renew. Sustain. Energy Rev., 55, 482-490. https://doi.org/10.1016/j.rser.2015.10.149.
  62. Marin, J.C., Barroso, A., Paris, F. and Canas, J. (2009), "Study of fatigue damage in wind turbine blades", Eng. Fail. Analy., 16(2), 656-668. https://doi.org/10.1016/j.engfailanal.2008.02.005.
  63. McCarthy, C., McCarthy, M. and Lawlor, V. (2005), "Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearances", Compos. Part B. 36(4), 290-305. https://doi.org/10.1016/j.compositesb.2004.11.003.
  64. McVicar, T.R., Roderick, M.L., Donohue, R.J., Li, L.T., Van Niel, T.G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N.M., Mescherskaya, A.V., Kruger, A.C., Rehman, S. and Dinpashoh, Y. (2012), "Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implication for evaporation", J. Hydrology, 416-417(24), 182-205. https://doi.org/10.1016/j.jhydrol.2011.10.024.
  65. Mohandes M. and Rehman S. (2014), "Short term wind speed estimation in Saudi Arabia", J. Wind Eng. Ind. Aerod., 128, 37-53. https://doi.org/10.1016/j.jweia.2014.02.007.
  66. Mohandes M. and Rehman S. (2016), "Convertible wind energy based on predicted wind speed at hub-height, Energy Sources Part A: Recovery, Utilization, and Environmental Effects. 38(1), 140-148. https://doi.org/10.1080/15567036.2012.758677
  67. Mohandes M., Rehman S. and Rahman S.M. (2011), "Estimation of wind speed profile using Adaptive Neuro-fuzzy Inference System (ANFIS)", Appl. Energy, 88, 4024-4032. https://doi.org/10.1016/j.apenergy.2011.04.015.
  68. Mohandes M.A., Rehman, S. and Rahman S.M. (2012), "Spatial estimation of wind speed", Int. J. Energy Res., 36(4), 545-552. https://doi.org/10.1002/er.1774
  69. Myers, A.T., Gupta, A., Ramirez, C.M. and Chioccarelli, E. (2012), "Evaluation of the seismic vulnerability of tubular wind turbine towers", The Proceedings of the 15th World Conference Earthquakes Engineering., Lisbon, September.
  70. Nebenfuhr, B. and Davidson L. (2016), "Prediction of wind-turbine fatigue loads in forest regions based on turbulent LES inflow fields", Wind Energy, 20(6), 1003-1015. https://doi.org/10.1002/we.2076.
  71. Njiri, J.G. and Soffker, D. (2016), "State-of-the-art in wind turbine control: Trends and challenges", Renew. Sustain. Energy Rev., 60, 377-393. https://doi.org/10.1016/j.rser.2016.01.110.
  72. Nuta, E., Christopoulos, C. and Packer, J.A. (2011), "Methodology for seismic risk assessment for tubular steel wind turbine towers: application to Canadian seismic environment", Canadian J. Civil Eng., 38, 293-304. https://doi.org/10.1139/L11-002.
  73. Overgaard, L.C.T. and Lund, E. (2010), "Structural collapse of a wind turbine blade - part B: progressive interlaminar failure models", Compos. Part A, 41, 271-283. https://doi.org/10.1016/j.compositesa.2009.10.012.
  74. Overgaard, L.C.T., Lund, E. and Thomsen, O.T. (2010), "Structural collapse of a wind turbine blade - part A: static test and equivalent single layered models", Compos. Part A, 41, 257-270. https://doi.org/10.1016/j.compositesa.2009.10.011.
  75. Pascu, V., Kanev, S. and Van, Wingerden, J.W. (2016), "Adaptive tower damping control for offshore wind turbines", Wind Energy, 20(5), 765-796. https://doi.org/10.1002/we.2058.
  76. Qin, B., Alam, M.M. and Zhou, Y. (2017), "Two tandem cylinders of different diameters in crossflow: flow-induced vibration", J. Fluid Mech., 829, 621-658. https://doi.org/10.1017/jfm.2017.510.
  77. Queiroga, J.A., Campos, K.S., Silva, G.F.B.L., Souza, D.F., Nunes, E.H.M. and Vasconcelos, W.L. (2013), "Post mortem study of refractory lining used in FCC units", Eng. Fail. Anal. 34, 290-299. https://doi.org/10.1016/j.engfailanal.2013.08.006.
  78. Rehman S. and Khan S. (2016), "Fuzzy logic based multi-criteria wind turbine selection strategy - A case study of Qassim, Saudi Arabia", Energies, 9(11), 872, https://doi.org/10.3390/en9110872.
  79. Rehman S. and Khan S.A. (2017), "Multi-criteria wind turbine selection using weighted sum approach", Int. J. Advan, Comput. Sci. Applic., 8(6), 128-132.
  80. Rehman S. and Sahin, A.Z. (2012), "Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review", Renew. Sustain. Energy Rev., 16(7), https://doi.org/10.1016/j.rser.2012.04.036.
  81. Rehman S., Al-Hadhrami L.M. and Bagiorgas H.S. (2012), "Offshore wind potential estimation in Ionian Sea", Trans. Control Mech. Syst., 1(5), 229-234.
  82. Rehman S., Alam, M.M., Meyer J.P. and Al-Hadhrami L.M. (2012), "Wind speed characteristics resource assessment using weibull parameters", Int. J. Green Energy, 9, 800-814. https://doi.org/10.1080/15435075.2011.641700.
  83. Rehman S., Baseer M.A., Meyer J.P., Alam Md. M., L. Alhems M., Lashin A. and Al, Arifi, N. (2016), "Suitability of utilizing small horizontal axis wind turbines for off grid loads in Eastern Region of Saudi Arabia, Energy Exploration Exploitation, 34(3), 449-467. https://doi.org/10.1177%2F0144598716630170. https://doi.org/10.1177/0144598716630170
  84. Rehman, S. (2013), "Long-term wind speed analysis and detection of its trends using mann-kendall test and linear regression method", Arab. J. Sci. Eng. (AJSE), 38(2), 421-437. https://doi.org/10.1007/s13369-012-0445-5
  85. Rehman, S. (2014), "Tower distortion and scatter factors of co-located wind speed sensors and turbulence intensity behavior", Renew. Sustain. Energy Rev., 34, 20-29. https://doi.org/10.1016/j.rser.2014.03.007.
  86. Rehman, S., Al-Hadhrami, L.M., Alam Md. M. and Meyer J.P. (2013), "Empirical correlation between hub height and local wind shear exponent for different sizes of wind turbines", Sustain. Energy Technol. Assess., 4, 45-51. https://doi.org/10.1016/j.seta.2013.09.003.
  87. Rehman, S., Al-Hadhrami, L.M., Alam, M.M. and Meyer, J.P. (2013), "Empirical correlation between hub height and local wind shear exponent for different sizes of wind turbines", Sustain. Energy Technol. Assess., 4, 45-51. https://doi.org/10.1016/j.seta.2013.09.003.
  88. Rehman, S., Alam M.M., Alhems L.M., Lashin, A. and Alarefe, N. (2015), "Performance evaluation of vertical axis wind turbine for small off grid loads in north-eastern region of Saudi Arabia", Wulfenia J., 22(9), 146-165.
  89. Rehman, S., Ali, S.S. and Khan S.A. (2016), "Wind farm layout design using cuckoo search algorithm", Appl. Artificial Intelligence - Int. J., 30(10), 899-922. http://dx.doi.org/10.1080/08839514.2017.1279043.
  90. Sadowski, A.J., Camara, A., Malaga-Chuquitaype, C. and Dai, K. (2017), "Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections", Earthq. Eng. Struct. Dyn., 46(2), 201-219. https://doi.org/10.1002/eqe.2785.
  91. Sathe, A., Mann, J., Barlas, T., Bierbooms, W.A.A.M. and Van Bussel, G.J.W. (2012), "Influence of atmospheric stability on wind turbine loads", Wind Energy 16(7), 1013-1032. https://doi.org/10.1002/we.1528.
  92. Shen, G., Xiang, D., Zhu, K., Jiang, L., Shen, Y. and Li, Y. (2018), "Fatigue failure mechanism of planetary gear train for wind turbine gearbox", Eng. Fail. Analy., 87, 96-110. https://doi.org/10.1016/j.engfailanal.2018.01.007.
  93. Shoaib, M., Siddiqui, I., Rehman, S., Ur Rehman, S. and Khan, S. (2017), "Wind speed distribution analysis using maximum entropy principle and weibull distribution function", Environ. Progress Sustain. Energy, 36(5), 1480-1489. doi/10.1002/ep.12589/epdf.
  94. Soman, R.N., Malinowski, P.H. and Ostachowicz, W.M. (2016), "Bi-axial neutral axis tracking for damage detection in wind-turbine towers", Wind Energy, 19(4), 639-650. https://doi.org/10.1002/we.1856.
  95. Song, M.G., Kweon, J.H., Choi, J.H., Byun, J.H., Song, M.H., Shin, S.J. and Lee, T.J. (2010), "Effect of manufacturing methods on the shear strength of composite single-lap bonded joints", Compos. Struct., 92(9), 2194-2202. https://doi.org/10.1016/j.compstruct.2009.08.041.
  96. Stamatopoulos, G.N. (2013), "Response of a wind turbine subjected to near-fault excitation and comparison with the Greek aseismic code provisions", Soil Dyn. Earthq. Eng., 46, 77-84. https://doi.org/10.1016/j.soildyn.2012.12.014.
  97. Tavner, P.J., Greenwood, D.M., Whittle, M.W.G., Gindele, R., Faulstich, S. and Hahn, B. (2012), "Study of weather and location effects on wind turbine failure rates", Wind Energy 16(2), 175-187. https://doi.org/10.1002/we.538.
  98. Wang, K., Hansen, M.O.L. and Moan, T. (2015), "Model improvements for evaluating the effect of tower tilting on the aerodynamics of a vertical axis wind turbine", Wind Energy, 18(1), 91-110. https://doi.org/10.1002/we.1685.
  99. Wang, L., Liu, X. and Kolios, A. (2016), "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling", Renew. Sustain. Energy Rev., 64, 195-210. https://doi.org/10.1016/j.rser.2016.06.007.
  100. Weblink-01 (2018), "Horizontal axis wind turbine components explained", https://www.energy.gov/eere/wind/inside-wind-turbine-0 [Accessed on 17/05/2018].
  101. Weblink-02 (2018), "Major components of a wind turbine gear box", https://www.olympus-ims.com/en/applications/rvi-wind-turbine/.
  102. Weblink-03 (2018), "Global summary of the wind turbine accidents on annual basis", http://www.caithnesswindfarms.co.uk/AccidentStatistics.htm.
  103. Weblink-04 (2018). https://mothersagainstturbines.com/2016/04/07/2016-wind-turbine-accident-report/comment-page-1.
  104. Weblink-05 (2018), https://www.google.com.sa/search?q=wind+turbine+accidents&safe=active&dcr=0&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwid56Tbio_aAhWBERQKHar1AfcQsAQISA&biw=1920&bih=965#imgrc=1ZV-ywTuf_XRRM: [Accessed on 28/03/2018].
  105. Weblink-06 (2018), "Wind Turbine Failures and their Root Cause Analysis (RCA)", https://www.romaxtech.com/wind-farm-solutions/real-life-examples-of-recent-wind-turbine-failures-and-their-root-cause/.
  106. Whitworth, H., Othieno, M. and Barton O. (2003), "Failure analysis of composite pin loaded joints", Compos. Struct., 59(2), 261-266. https://doi.org/10.1016/S0263-8223(02)00056-9.
  107. Wilson, G. and McMillan, D. (2014), "Assessing wind farm reliability using weather dependent failure rates", J. Phys. Confe. Series, 524, 012181. https://doi.org/10.1088/1742-6596/524/1/012181
  108. Wiser, R., Hand, M., Seel, J. and Paulos, B. (2016), "Reducing wind energy costs through increased turbine size: is the sky the limit", Berkeley Lab, (https://emp.lbl.gov/sites/all/files/scaling_turbines.pdf).
  109. Witcher, D. (2005), "Seismic analysis of wind turbines in the time domain", Wind Energy, 8, 81-91. https://doi.org/10.1002/we.135.
  110. Wu, G., Qin, Z., Zhang, L. and Yang, K. (2018), "Strain response analysis of adhesively bonded extended composite wind turbine blade suffering unsteady aerodynamic loads", Eng. Fail. Analy., 85, 36-49. https://doi.org/10.1016/j.engfailanal.2017.12.009.
  111. Wu, G., Qin, Z., Zhang, L., and Yang, K. (2018), "Strain response analysis of adhesively bonded extended composite wind turbine blade suffering unsteady aerodynamic loads", Eng. Fail. Analy., 85, 36-49. https://doi.org/10.1016/j.engfailanal.2017.12.009.
  112. Yang, J., Peng, C., Xiao, J., Zeng, J., Xing, S., Jin, J. and Deng, H. (2013), "Structural investigation of composite wind turbine blade considering structural collapse in fullscale static tests", Compos. Struct., 97, 15-29. https://doi.org/10.1016/j.compstruct.2012.10.055.
  113. Yang, R., He, Y. and Zhang, H. (2016), "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade", Renew. Sustain. Energy Rev., 60, 1225-1250. https://doi.org/10.1016/j.rser.2016.02.026.
  114. Yang, W., Tavner, P.J., Crabtree, C.J., Feng, Y. and Qiu, Y. (2014), "Wind turbine condition monitoring: technical and commercial challenges", Wind Energy 17, 673-693. https://doi.org/10.1002/we.1508.
  115. Zhang, Z., Yin, Z., Han, T. and Tan, A.C.C. (2013), "Fracture analysis of wind turbine main shaft", Eng. Fail. Analy., 34, 129-139. https://doi.org/10.1016/j.engfailanal.2013.07.014
  116. Zheng, Q., Rehman, S., Alam, Md., M. and Alhems L.M. (2017), "Wavelet and power spectrum based extraction of inherent properties of measured long-term wind speed data series", J. Earth Syst. Sci., 126(3), 36, 1-16. https://doi.org/10.1002/we.1508.

Cited by

  1. Flutter study of flapwise bend-twist coupled composite wind turbine blades vol.32, pp.3, 2021, https://doi.org/10.12989/was.2021.32.3.267
  2. Long-term fatigue reliability enhancement of horizontal axis wind turbine blade vol.33, pp.2, 2020, https://doi.org/10.12989/was.2021.33.2.169