• Title/Summary/Keyword: Wind Turbine Certification

Search Result 24, Processing Time 0.026 seconds

A Study on the Improvement of Domestic Wind Turbine Certification System (국내 풍력발전시스템 인증제도 개선방안에 관한 연구)

  • Jang, Ho-Jin;Park, Jung-Ha;Park, Young-Hyun;Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.125-131
    • /
    • 2011
  • Recently, the application of renewable energy to building is steadily increasing in domestic due to the energy saving efforts around the world. Among the all, wind energy is one of the rising energy source because of its high technological maturity. Domestic wind power market has rapidly increased in recent years but the certification system for wind turbine has not been activated since it was introduced in 2009. Thus, this study aims to propose the improvement of certification system for wind turbine by comparing domestic certification system with international certification system. The result of this study are as follows. First, domestic certification system needs to be subdivided and established by systematic standards. Second, it is considered that education about rating standards is required to wind turbine makers to activate domestic certification system. Third, domestic certification agenciesand test agencies need to be unified and reduced.

A Study on Development of Test Site for Wind Turbine Prototype Test (풍력터빈시험을 위한 실증시험장 개발에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hag;So, Soon-Yeol;Kim, Tae-Gon;Kim, Young-Gon;Jeong, Moon-Seon;Jeong, Seong-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • It is evident that in the wind energy business as an economic activity there is a close relationship between the wind speed and the revenues. The wind turbine test facility for wind turbine accreditation is intended to be used by the industry for testing of both main components and systems. This paper suggest the wind test site for certification of prototype wind turbine with international regulations. The test site has an environmental permit for wind turbines with a maximum hub height of 120m and a rotor diameter up to 120m, and can accommodate prototypes with installed electrical powers up to 5MW each. A wind turbine manufacturer can lease the location for a period of type certification. And also researchers are the development of new methods for measuring the influence, performance and durability of the components, a mathematical and numerical modelling of component responses by using the site.

Domestic Application and Procedure Analysis of Gearbox Field Test (증속기 현장시험 국내 적용 사례 및 절차 분석)

  • Lee, Gwang-Se;Kang, Minsang;Kim, Seokwoo;Lee, Jin-Jae
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.23-32
    • /
    • 2020
  • The wind turbine gearbox has the longest downtime among other major turbine components such as blades, generators, and main bearings. Therefore, gearbox manufacturers conduct rig tests to evaluate conformity in terms of design and function. Rig tests, however, have limited similarity compared with atmospheric wind turbine operating conditions. Rig test conditions are thoroughly controlled and maintained by testers and the component certificates of gearboxes issued through the test cannot fulfill wind farm operator's requirements. Hence, certification bodies such as DNV-GL and UL require a mandatory gearbox field test report for type certification. The Korea Energy Agency (KEA) also introduced gearbox field test as a part of the KS type certificate in 2016, although it is optional . In this paper, gearbox field test procedures and requirements are introduced, and the first domestic application case of the test is reported. The field test was conducted with a 1.5 MW wind turbine gearbox located in Jeju as the test object.

Design of Test Site for Large-Scale Wind Turbine Performance Verification (초대형 풍력터빈 시험을 위한 실증시험장 설계)

  • Sang-Man Kim;Tae-Yoon Jeong;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.397-404
    • /
    • 2023
  • This paper designs a wind turbine test site based on international regulations for the certification of wind turbine prototypes. The maximum height of the meteorological mast installed at the test site is 140m, and power facilities capable of testing up to three wind turbines of 5MW or more are installed. The weather resources measured at the mast can be recorded and analyzed using a monitoring system. Wind turbine manufacturers can use this test site during the certification period, and the installed wind turbines can be used for continuous power generation projects. Therefore, this test site can provide fundamental data for measuring the long-term performance and durability of wind turbines, which can be used to improve models or develop new wind turbines.

A Study on the Mechanical loads Monitoring System of a 750kW Wind Turbine (750kW급 풍력발전기의 부하 모니터링 시스템에 관한 연구)

  • Nam, Yun-Soo;Jang, Hu-Yeong;Yun, Tae-Jun
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.63-69
    • /
    • 2008
  • The exact load measurements for the mechanical parts of wind turbine are important step both for evaluation of specific wind turbine design and for a certification process. A wind turbine monitoring system is essential equipment for mechanical load analysis of a wind turbine. This monitoring system is based on IEC 61400-13 and strain gage are used to measure a mechanical load of wind turbine. Also this system monitors signals from a meteorological mast. The measured signals which are sampled at 200 Hz are automatically saved on a data file in the unit of ten minutes. A detail explanation for the developed wind turbine monitoring system is presented in this study.

  • PDF

The Study about Performance Test of Wind turbine (풍력발전기 출력성능 평가에 대한 연구)

  • Ko, Suk-Whan;Jang, Moon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1348-1349
    • /
    • 2011
  • In this paper, The case of power performance test for 3MW wind-turbine system is introduced. For the verification of power curve and the certification of wind-turbine, power performance test is very important. This paper described the power testing results of a 3MW wind turbine and analysed an uncertainty about the testing. The measured power curves are very closely coincide with the calculated. Total uncertainty of measured data for Power Curve is 120~200kW in the rated power.

  • PDF

Standardization Trend and Propulsion Strategy of Wind Power Generation (풍력발전 표준화 동향 및 추진전략)

  • Kim, Mann-eung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.475-475
    • /
    • 2009
  • Recent alarming acceleration of global warming has made power generations using renewable energy to be in the middle of the spotlight. Korean government has also announced that it will make the related industry to be nation's one of main export items with high investments to low carbon green growth industry. To achieve this goal of exporting the renewable energy power generation system beyond domestic use, internationally acceptable rules should be applied and the three step processes of design, performance assessment and certification should follow international standards. Corresponding this international requests, IEC(International Electrotechnical Commission) is conducting the establishment of rules in TC88 for technical requirements of wind turbines. Design life-time of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC 61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. It thus appears that the examination of contents and decisions discussed in the international standard committee will help people in the field of offshore wind energy and ocean energy converters.

  • PDF

An Study KS Standardization for Acoustic noise measurement of the Wind Turbine (풍력발전시스템 소음평가의 KS 규격화에 관한 연구)

  • Son, C.Y.;Kim, J.H.;Oh, D.H.;Park, J.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.406-410
    • /
    • 2005
  • The wind turbine, Europe and the United States are different with the standards process each other when the manufacturing company which in order to demand the standards process to a construction in the multi country with interested parties of the corresponding nation to, always the re-agreement is difficult. Korean wind turbine also detail there is not a standard, when it produces and establishes of wind turbine, the problem point occurs. It is like that investigation of international standards system it leads and when it prepares the Acoustic noise measurement of the Wind Turbine Systems of Korea, it prepares the base for industrial development wind turbine of Korea.

  • PDF

A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine (풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석)

  • Park Moo-Yeol;Yoo Neung-Soo;Nam Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

The study of load measurement on U50 wind turbine (U50 풍력발전기 하중측정 실증연구)

  • Cho, Joo-Suk;Hong, Hyeok-Soo;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.114-122
    • /
    • 2007
  • This paper addresses the measurement of structural loads on the Unison U50 wind turbine. The load measurement are carried out to determine the actual loads acting on a wind turbine. This is needed not only the certification process but also improving the technical development for prototype wind turbine. The measurement system is consists of measuring load, operating quantities and meteorological signal. All data that occur during the operating of a WT are stored the data acquisition system automatically. With using the measured data, load spectrum and equivalent load are evaluated according to IEC61400-13 "Measurement of mechanical loads".

  • PDF