• 제목/요약/키워드: Wet deposition

검색결과 265건 처리시간 0.039초

지표면 Wetness에 따른 오존의 건성침적속도 특성 (The Characteristics of the Dry Deposition Velocity for O3 regarding Surface Wetness)

  • 이화운;김유근;문난경
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.393-397
    • /
    • 2003
  • It has been researched the relationship between deposition velocity and factors which could affect the deposition phenomena and deposition velocity also has been estimated fer several land-use types. The typical deposition velocities are complex functions of surface types, atmospheric stabilities, friction velocities, air pollutants and so on. The canopy resistance is major contribution to the model's total resistance for O₃. Canopy wetness is also an important factor to calculate deposition velocity. We considered the canopy wetness as canopy water content(CWC) in our Model. But, it is not easy to observe CWC over each land-use types. In this study, we use CWC observed by EMEFS(CANADA Environment Service, 1988) to examine the influence of CWC in estimation of 03 dry deposition velocity(V/sub d/) in summertime. The value of O₃ V/sub d/ range 0.2 ∼ 0.7 cm s/sup -1/ on dry surface and 0.01 ∼ 0.35 cm s/sup -1/ on wet surface in daytime.

2005년 우리나라 습성강하물의 특성과 분포 (A Characteristics and Distributions of Wet Deposition in Korea, 2005)

  • 한진석;이상덕;홍유덕;공부주;신선아;정일록
    • 한국대기환경학회지
    • /
    • 제22권4호
    • /
    • pp.459-467
    • /
    • 2006
  • This study was carried out to characteristics and distributions of acid deposition in Korea. Precipitation was collected by acid deposition monitoring networks and analyzed for pH, conductivity, and following major ionic components $SO_4^{2-}$, $CI^-$, $NO_3^-$, $NH_4^+$, $Na^+$, $K^+$, $Ca^{2+}$, $Mg{2+}$. During the investigation period, Volume weighted annual mean pH of precipitation in Korea is 4.8, showing slightly acidic level. The amount of rainfall in the range of pH 5.1$\sim$5.5 charged approximately 28% of annual precipitation,23.4% in pH 4.6$\sim$5.0, and contributed 16.2% under pH 4.5. Among seasons, alkaline precipitation has occurred more often in spring, meanwhile acidic precipitation in which pH is under 4.5 has frequently occurred in autumn. Volume weighted annual mean concentrations of $SO_4^{2-}$, $NO_3^-$, $CI^-$ are 2.558 mg/L, 1.590 mg/L, 1.286 mg/L respectively, and provided that $SO_4^{2-}$, is the major contributor, followed by $NO_3^-$, $CI^-$. In case of cation, annual mean concentration for $NH_4^+$, $Na^+$, $K^+$, $Ca^{2+}$, $Mg{2+}$, $H^+$ are 0.693 mg/L, 0.528 mg/L, 0.439 mg/L, 0.455 mg/L, 0.089 mg/L,0.015 mg/L, and $NH_4$ were decided as the main contributor, followed by $Na^+$, $K^+$, $Ca^{2+}$, $Mg{2+}$, $H^+$. Annual wet deposition rate for sulfate, nitrate and ammonia are $3.316gm^{-2}yr^{-1}$, $2.057gm^{-2}yr{-1}$, $0.894gm^{-2}yr{-1}$, respectively, and it was founded that the deposition flux in summer contributes about 38.42% to 67.62% to total deposition.

코발트살리사이드를 위한 습식세정 공정 (Wet Cleaning Process for Cobalt Salicide)

  • 정성희;송오성
    • 한국표면공학회지
    • /
    • 제35권6호
    • /
    • pp.377-382
    • /
    • 2002
  • We investigated the appropriate wet cleaning process for Co-Ti-Si compounds formed on top of cobalt disilicide made from Co/Ti deposition and two rapid thermal annealing (RTA). We employed three wet cleaning processes, WP1 ($H_2$SO$_4$ etchant), WP2 ($NH_4$OH etchant), and WP3 which execute sequentially WP1 and WP2 after the first RTA. All samples were cleaned with BOE etchant after the second RTA. We characterized the sheet resistance with process steps by a four-point probe, the microstructure evolution by a cross detail sectional transmission electron microscope, a Auger depth profiler, and a X-ray diffractometer (XRD). We confirmed WP3 wet cleaning process were the most suitable to remove CoTiSi layer selectively.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

Growth and Characteristics of Near-UV LED Structures on Wet-etched Patterned Sapphire Substrate

  • Cheong, Hung-Seob;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권3호
    • /
    • pp.199-205
    • /
    • 2006
  • Patterned sapphire substrates (PSS) were fabricated by a simple wet etching process with $SiO_2$ stripe masks and a mixed solution of $H_2SO_4$ and $H_3PO_4$. GaN layers were epitaxially grown on the PSS under the optimized 2-step growth condition of metalorganic vapor deposition. During the 1st growth step, GaN layers with triangular cross sections were grown on the selected area of the surface of the PSS, and in the 2nd growth step, the GaN layers were laterally grown and coalesced with neighboring GaN layers. The density of threading dislocations on the surface of the coalesced GaN layer was $2{\sim}4\;{\times}\;10^7\;cm^{-2}$ over the entire region. The epitaxial structure of near-UV light emitting diode (LED) was grown over the GaN layers on the PSS. The internal quantum efficiency and the extraction efficiency of the LED structure grown on the PSS were remarkably increased when compared to the conventional LED structure grown on the flat sapphire substrate. The reduction in TD density and the decrease in the number of times of total internal reflections of the light flux are mainly attributed due to high level of scattering on the PSS.

레이저충격파를 이용한 웨이퍼 세정 (Wafer cleaning efficiency by Laser Shock Wave)

  • 강영재;이상호;박진구;이종명;김태훈
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 기술심포지움 논문집
    • /
    • pp.256-259
    • /
    • 2003
  • To develop cleaning process various particles should be deposited on wafer surfaces to measure particle removal efficiencies. The purpose of the article in to evaluate, removal efficient)r of silica and alumina particles from wafer surfaces when they are deposited by dry and wet method. Dry deposition in air and wet spray deposition using solutions are used. van der Waals are considered to calculate the adhesion force of particles on surfaces. Higher adhesion force is measured on alumina particles on silicon when particles are deposited in air.

  • PDF

MOS 소자용 Silicon Carbide의 열산화막 생성 및 특징 (Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices)

  • 오경영;이계홍;이계홍;장성주
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.327-333
    • /
    • 2002
  • In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.

부유부상 공정의 마이크로 스틱키 제거 효율에 관한 연구 (Removal Efficiency of Microstickies by Flotation Process)

  • 박일;이학래
    • 펄프종이기술
    • /
    • 제37권3호
    • /
    • pp.1-8
    • /
    • 2005
  • Increase in the utilization rate of recycled paper and closing level of papermaking system increased the problem associated with stickies that include decrease in process runnability and product quality. It is required to establish a process for removing the micro stickies to solve the problems associated with stickies. In this study, the application of flotation process as a method to remove micro stickies was examined. Model micro stickies (MMS) were prepared using microcrystalline cellulose (MCC) and pressure sensitive adhesives (PSA), and the influence of three nonionic surfactants on the removal efficiency of MMS from flotation process was examined. Also the effect of surfactants on the deposition of micro stickies that remaining in the papermaking wet end onto wire was examined. Removal efficiency of MMS by flotation was increased when the proportion of nonionic surfactant with propylene oxide (PO) type hydrophilic tail was increased and stock pH was 7. It was suggested that this nonionic surfactant minimized the increase of surface energy of hydrophobic MMS. The MMS with high hydrophobicity remaining in the papermaking system, however, would cause more serious deposition problems on papermaking wet end. Therefore, it is of great importance to increase the removal efficiency of MMS in flotation process for the prevention of papermaking system contamination caused by stickies deposition.