• Title/Summary/Keyword: Weibull Lifetime

Search Result 128, Processing Time 0.024 seconds

V-t Characteristics and Survival Probability of Turn-to-Turn Models for HTS Transformer (고온초전도 변압기를 위한 턴간 모델의 V-t 특성 및 생존 확률)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van-Dung;Seok, Bok-Yeol;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.356-362
    • /
    • 2004
  • Using multi wrapped copper by polyimide film for HTS transformer, the breakdown and V-t characteristics of two type models for turn-to-turn, one is point contact model, the other is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on V-t characteristics under at voltage as well as breakdown voltage under ac and impulse voltage in $LN_2$ was carried. Also, survival analysis was performed according to the Kaplan-Meier method. The breakdown voltages for surface contact model are lower than that of the point contact model, because the contact area of surface contact model is wider than that of point contact model. At the same time, the shape parameter of the point contact model is a little bit larger than the of the surface contact model. The time to breakdown tn is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

  • PDF

Failure Mechanism Analysis of SAW Device under RF High Power Stress (RF 고전력 스트레스에 의한 SAW Device의 고장메카니즘 분석)

  • Kim, Young-Goo;Kim, Tae-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.215-221
    • /
    • 2014
  • In this paper, the improved power durability test system and method for an reliability analysis of SAW device is proposed and the failure mechanism through failure analysis is analyzed. As a result of the failure analysis using microscope, SEM and EDX, the failure mechanism of the SAW device is electromigration due to joule heating under high current density and high temperature condition. The electromigration makes voids and hillocks in the IDT electrode and the voids and hillocks can lead to short circuit and open circuit faults, respectively, increasing the insertion loss of an SAW filter. The accelerated life testing of the SAW filter for 450MHz CDMA application using the proposed power durability test system and method is carried out. $B_{10}$ lifetime of the SAW filter using Eyring model and Weibull distribution is estimated as about 98,500 hours.

Application of Judgement Criteria to Measure Deterioration and to Judge Insulation Resistance in High-Power Live XLPE Cables (고전력 활선 XLPE 케이블의 열화를 측정하기 위한 판정기준의 적용 및 절연상태 판정)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.239-244
    • /
    • 2017
  • The demand for electric power is increasing every year. All facilities operating at power stations and all facilities used in transmitting high volumes of electric power are therefore expected to operate with a high degree of reliability. 6.6 kV XLPE 100 SQ 1C cables are used to deliver high levels of generated electric power. Depending on the method of manufacture, installation environment, and usage conditions, the deterioration processes of power cables start from the instant of operation. Cable junctions may break down in three years from the start of operation due to manufacturing or construction defects. We have invented the first device in Korea to monitor the status of live cables and installed these at Korea Western Power Co., Ltd.. We have set the criteria to determine deterioration status and specified the degree of deterioration at which one should replace the cables. In this paper, we present the effect of insulation layer and sheath on the insulation resistance status in cables.

Optimal Inspection Policy for One-Shot Systems Considering Reliability Goal (목표 신뢰도를 고려한 원-샷 시스템의 최적검사정책)

  • Jeong, Seung-Woo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.96-104
    • /
    • 2017
  • A one-shot system (device) refers to a system that is stored for a long period of time and is then disposed of after a single mission because it is accompanied by a chemical reaction or physical destruction when it operates, such as shells, munitions in a defense weapon system and automobile airbags. Because these systems are primarily related with safety and life, it is required to maintain a high level of storage reliability. Storage reliability is the probability that the system will operate at a particular point in time after storage. Since the stored one-shot system can be confirmed only through inspection, periodic inspection and maintenance should be performed to maintain a high level of storage reliability. Since the one-shot system is characterized by a large loss in the event of a failure, it is necessary to determine an appropriate inspection period to maintain the storage reliability above the reliability goal. In this study, we propose an optimal inspection policy that minimizes the total cost while exceeding the reliability goal that the storage reliability is set in advance for the one-shot system in which periodic inspections are performed. We assume that the failure time is the Weibull distribution. And the cost model is presented considering the existing storage reliability model by Martinez and Kim et al. The cost components to be included in the cost model are the cost of inspection $c_1$, the cost of loss per unit time between failure and detection $c_2$, the cost of minimum repair of the detected breakdown of units $c_3$, and the overhaul cost $c_4$ of $R_s{\leq}R_g$. And in this paper, we will determine the optimal inspection policy to find the inspection period and number of tests that minimize the expected cost per unit time from the finite lifetime to the overhaul. Compare them through numerical examples.

Characteristics of Ultimate Load in a Wind Turbine for IEC 61400-1 DLC1.1 and DLC1.3 (IEC 61400-1 DLC1.1과 DLC1.3에 대한 풍력터빈의 극한하중 특성)

  • Kim, Chung-Ok;Nam, Hyun-Woo;Eum, Hark-Jin;Kim, Gui-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • IEC 61400-1 requires design lifetime of wind turbines at least 20 years, thus wind turbine should be assured for structural safety through load assessment. DLCs have been defined with respect to the load assessment in IEC 61400-1. In addition, if the extreme design values for DLC1.3 are equal or exceed the extreme design value for DLC1.1, DLC1.1 may be omitted. To omit DLC1.1, scale factor (c) will be increased in DLC1.3. However, this particular adjustment is not specified guidelines. Thus, this study was conducted. DLC1.1 was calculated for extrapolation of 50 years-extreme events using several probability distribution functions and fitting methods. And DLC1.3 was calculated for up to seven different values of scale factor (c) with $2{\leq}c{\leq}5$ in steps of 0.5. Finally, in this study, scale factor (c) that was the value of 4.51 was determined.

A Study on the Life Characteristic of an Automotive Water-pump Bearing Using the Accelerated Test Method (가속시험법을 활용한 자동차용 워터펌프 베어링의 수명특성에 관한 연구)

  • Yang, Hui Sun;Shin, Jung Hun;Park, Jong Won;Sung, Baek Ju
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.35-41
    • /
    • 2015
  • A water-pump located in the cooling area of a car circulates cooling water. A particular bearing element, known as a water-pump bearing, installed in the rotating part carries the entire load. The failure of this water-pump bearing has a direct impact on the failure of the automobile engine, and so securing its reliability is crucial. Several researchers have examined the design principles of the water-pump bearing, but there are no reports on the life characteristic of the bearing yet. Herein, we report the construction of test equipment to reproduce the spalling of the roller contact, which is the main failure mode of the chosen water-pump bearing. We chose the radial load as an accelerated stress factor and validated the failure mode by monitoring the surface defects. We conducted the accelerated life test after determining the accelerated stress level through a combination of finite element analysis and a preliminary test. In the life tests, we used an accelerometer to perform failure diagnosis. In the last stage of this study, we present a statistical reliability analysis. Thus, we fully estimated the shape parameter of the water-pump bearing, accelerating level on the load , and the lifetime (MTTF and B10 life) under real use conditions, and finally proposed an interval estimation value considering the uncertainty of the estimated value.

Natural Aging Effect on the Fiber Tensile Strength of Carbon Epoxy Pressure Vessel (자연 노화에 따른 카본 에폭시 압력용기의 섬유 인장 강도 변화)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • To evaluate and investigate the aging characteristics and the structural service lifetime of the CFV(carbon fiber pressure vessel), natural aging tests were carried out using the CFVs, which had been placed and aged at outdoor and indoor laboratories for 10 and 15 years, respectively. To obtain the probabilistic characteristics of ageing characteristics in aged CFVs, inner pressure loading test was conducted with ring specimens taken from aged CFVs. And, to observe the interface morphology of aged CFVs, the micro-photographs were taken by SEM microscope and the fractured interfaces between the carbon fiber and the matrix resin were scrutinized. Based on the Weibull parameters of the tensile failure strain of aged CFVs, the degradation of the 10 and the 15 year aged CFV occur by 19% and 23%, respectively, and the effect of the placement, whether being placed inside the laboratory or not, is not so significant. However, the outer layer protection, such as painting, is found very advantageous to prevent CFV from aging.

A Linear Change of Leakage Current and Insulation Resistance of 22 kV Cables (22 kV 케이블의 누설전류 및 절연저항의 선형적 변화)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.169-173
    • /
    • 2015
  • This study is to predict the life exponent by measuring, over 7 years, the insulation resistance of high-voltage cables in 22 kV operation for 13 years. We found out the lifetime index in order to determine the time-dependent trend of deteriorating performance of power cables. The insulation resistances decreased according to elapsed time. We found that: the initial measurements of the cable systems were in agreement with the deterioration properties of the Arrhenius Law. By analyzing the life curve of the cable system, we also verified that the value of the life exponent (n) in the v-t characteristics defined by Weibull distribution has values from 10 to 11. When designing the cable system, the initial value of life exponent was chosen as 9 without any grounding. We have verified that the theoretical grounding based on the design safety of n=9 was actually the best one available. In the short term, we apply our research result to the diagnosis and evaluation of the power cables. In the long run, however, we plan to reduce the cost of the installation and management of cable systems in operation at power stations.