A web robot is a software that has abilities of tracking and collecting web documents on the Internet(l), The performance scalability of recent web robots reached the limit CIS the number of web documents on the internet has increased sharply as the rapid growth of the Internet continues, Accordingly, it is strongly demanded to study on the performance scalability in searching and collecting documents on the web. 'Design of web robot based on Multi-Agent to speed up documents collection ' rather than 'Sequentially executing Web Robot based on the existing Fork-Join method' and the results of analysis on its performance scalability is presented in the thesis, For collection speedup, a Multi-Agent based web robot performs the independent process for inactive URL ('Dead-links' URL), which is caused by overloaded web documents, temporary network or web-server disturbance, after dividing them into each agent. The agents consist of four component; Loader, Extractor, Active URL Scanner and inactive URL Scanner. The thesis models a Multi-Agent based web robot based on 'Amdahl's Law' to speed up documents collection, introduces a numerical formula for collection speedup, and verifies its performance improvement by comparing data from the formula with data from experiments based on the formula. Moreover, 'Dynamic URL Partition algorithm' is introduced and realized to minimize the workload of the web server by maximizing a interval of the web server which can be a collection target.
Journal of The Korean Association of Information Education
/
v.5
no.1
/
pp.69-78
/
2001
Recently, the current trend for computer based learning is moving from CAI environment to WBI environment. Most web documents for WBI learning are collected by aid of search engine. Instructors use those documents as learning materials after they evaluate availability of retrieved web documents. But, this method has the following problems. First, we search repeatedly the web documents selected by instructor. Second, there is a need for another course of instruction design in order to suggest the web documents for learner. Third, it is very difficult to analyze for relevance between the web documents and test results. In this work, we suggest WAILS(Web Agent Instruction Learning System) that retrieves web documents for WBI learning and guides learning course for learners. WAILS collects web documents for WBI learning by aid of web agent. Then, instructors can evaluate them and suggest to learners by using instruction-learning generating machine. Instructors retrieve web documents and the instruction-learning design at the same time. This can facilitate WBI learning.
Data types used for big-data analysis are very widely, such as news, blog, SNS, papers, patents, sensed data, and etc. Particularly, the utilization of web documents offering reliable data in real time is increasing gradually. And web crawlers that collect web documents automatically have grown in importance because big-data is being used in many different fields and web data are growing exponentially every year. However, existing web crawlers can't collect whole web documents in a web site because existing web crawlers collect web documents with only URLs included in web documents collected in some web sites. Also, existing web crawlers can collect web documents collected by other web crawlers already because information about web documents collected in each web crawler isn't efficiently managed between web crawlers. Therefore, this paper proposed a distributed web crawler. To resolve the problems of existing web crawler, the proposed web crawler collects web documents by RSS of each web site and Google search API. And the web crawler provides fast crawling performance by a client-server model based on RMI and NIO that minimize network traffic. Furthermore, the web crawler extracts core content from a web document by a keyword similarity comparison on tags included in a web documents. Finally, to verify the superiority of our web crawler, we compare our web crawler with existing web crawlers in various experiments.
A genre or a style is another view of documents different from a subject or a topic. The style is also a criterion to classify the documents. There have been several studies on detecting a style of textual documents. However, only a few of them dealt with web documents. In this paper we suggest sets of features to detect styles of web documents. Web documents are different from textual documents in that Dey contain URL and HTML tags within the pages. We introduce the features specific to web documents, which are extracted from URL and HTML tags. Experimental results enable us to evaluate their characteristics and performances.
Journal of information and communication convergence engineering
/
v.11
no.4
/
pp.268-273
/
2013
In this paper, we propose a document classification model using Web documents as a part of the training corpus in order to resolve the imbalance of the training corpus size per category. For the purpose of retrieving the Web documents closely related to each category, the proposed document classification model calculates the matching score between word features and each category, and generates a Web search query by combining the higher-ranked word features and the category title. Then, the proposed document classification model sends each combined query to the open application programming interface of the Web search engine, and receives the snippet results retrieved from the Web search engine. Finally, the proposed document classification model adds these snippet results as Web documents to the training corpus. Experimental results show that the method that considers the balance of the training corpus size per category exhibits better performance in some categories with small training sets.
With respect to the exponential increment of web documents on the internet, it is important how to improve performance of clustering method for web documents. Web document clustering techniques can offer accurate information and fast information retrieval by clustering web documents through semantic relationship. The clustering method based on mesh-graph provides high recall by calculating similarity for documents, but it requires high computation cost. This paper proposes a clustering method using hyperlinks which is structural feature of web documents in order to keep effectiveness and reduce computation cost.
Gupta, Pooja;Singh, Sandeep K.;Yadav, Divakar;Sharma, A.K.
Journal of Information Processing Systems
/
v.9
no.2
/
pp.217-236
/
2013
Ranking thousands of web documents so that they are matched in response to a user query is really a challenging task. For this purpose, search engines use different ranking mechanisms on apparently related resultant web documents to decide the order in which documents should be displayed. Existing ranking mechanisms decide on the order of a web page based on the amount and popularity of the links pointed to and emerging from it. Sometime search engines result in placing less relevant documents in the top positions in response to a user query. There is a strong need to improve the ranking strategy. In this paper, a novel ranking mechanism is being proposed to rank the web documents that consider both the HTML structure of a page and the contextual senses of keywords that are present within it and its back-links. The approach has been tested on data sets of URLs and on their back-links in relation to different topics. The experimental result shows that the overall search results, in response to user queries, are improved. The ordering of the links that have been obtained is compared with the ordering that has been done by using the page rank score. The results obtained thereafter shows that the proposed mechanism contextually puts more related web pages in the top order, as compared to the page rank score.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.6
/
pp.849-854
/
2007
It is difficult that we collect only target documents from the Innumerable Web documents. One of solution to the problem is that we select target documents on the Web site which services many documents of target domain. In this paper, we will propose an intelligent crawling method collecting needed documents based on URL pattern script defined by XML. Proposed crawling method will efficiently apply to the sites which service structuralized information of a piece with database. In this paper, we collected 50 thousand Web documents using our crawling method.
A huge amount of web documents, which are published on the Internet, provide to users not only helpful information but also harmful information such as pornography. In this paper we propose a method to detect the harmful web documents effectively. We first analyze harmful web documents, and extract factors to determine whether a given web document is harmful. Detail criteria are also described to assign a harmfulness score to each factor. Then the harmfulness score of a web document is computed by adding the harmfulness scores of all factors. If the harmfulness score of a web document is greater than a given threshold, the web document is detected as harmful. It is expected that this study could contribute to the protection of users from harmful web documents on the Internet.
In this paper, we suggest a method for dynamic generation of SMIL documents by user profiles on the web. Generated multimedia documents are based on the SMIL (Synchronized Multimedia Integration Language) that are recommended by the W3C. The method generates automatically XSLT documents according to user profiles. SMIL documents are produced on real-time by integration of the XSLT documents and the XML documents that are made already. Most of conventional web-based documents are based on the HTML that is difficult to support reusability of documents are relation among multimedia abject. However, the suggested method is based on the XML, and so it supports reusability of documents and produces efficiently various SMIL-based multimedia documents. Application for the suggested method are as follows; Electronic commerce, tele-lecture, a web-based document editing, etc.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.