• Title/Summary/Keyword: Web Queries

Search Result 226, Processing Time 0.025 seconds

Analysis on Update Performance of XML Data by the Labeling Method (Labeling 방식에 따른 XML 데이터의 갱신 성능 분석)

  • Jung Min-Ok;Nam Dong-Sun;Han Jung-Yeob;Park Jong-Hyen;Kang Ji-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.106-108
    • /
    • 2005
  • XML is situating a standard fur data exchange in the Web. Most applications use database to manage XML documents of high-capacity efficiently. Therefore, most applications create label that expresses structure information of XML data and stores with information of XML document. A number of labeling schemes have been designed to label the element nodes such that the relationships between nodes can be easily determined by comparing their labels. With the increased popularity of XML data on the web, finding a labeling scheme that is able to support order-sensitive queries in the presence of dynamic updates becomes urgent. XML documents that most applications use have many properties as their application. So, in the thesis, we present the most efficient updating methods dependent on properties of XML documents in practical application by choosing a representative labeling method and applying these properties. The result of our test is based on XML data management system, so it expect not only used directly in practical application, but a standard to select the most proper methods for environment of application to develop a new exclusive XML database or use XML.

  • PDF

A Study on Automatic Text Categorization of Web-Based Query Using Synonymy List (유사어 사전을 이용한 웹기반 질의문의 자동 범주화에 관한 연구)

  • Nam, Young-Joon;Kim, Gyu-Hwan
    • Journal of Information Management
    • /
    • v.35 no.4
    • /
    • pp.81-105
    • /
    • 2004
  • In this study, the way of the automatic text categorization on web-based query was implemented. X2 methods based on the Supported Vector Machine were used to test the efficiency of text categorization on queries. This test is carried out by the model using the Synonymy List. 713 synonyms were extracted manually from the tested documents. As the result of this test, the precision ratio and the recall ratio were decreased by -0.01% and by 8.53%, respectively whether the synonyms were assigned or not. It also shows that the Value of F1 Measure was increased by 4.58%. The standard deviation between the recall and precision ratio was improve by 18.39%.

A Study on the Implementation of a Web-browser-based Global e-Navigation Service Discovery System for Decentralized Maritime Service Registries (탈중앙화 MSR 환경에서의 웹 브라우저 기반 글로벌 이내비게이션 서비스 검색 시스템 구현에 대한 연구)

  • Jinki, Jung;Young-Joong, Ahn
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2022
  • The flow of global digitalization is leading to the emergence of a decentralized system environment based on blockchain or distributed ledger technology in the fields of economy, identity authentication, and logistics. Accordingly, a requirement that public services be searchable from several decentralized maritime service registries (MSRs) has been derived in terms of the discoverability of e-navigation services. This study describes a decentralized MSR environment composed of the MSR ledger and multiple local MSRs, and it has implemented a service search system that can search global e-navigation services in the environment through a web browser. This system is a decentralized application that dynamically generates service attributes, geometry information, and free text queries, and that provides users with relevant MSR and service access information from search results that are registered in the MSR ledger. In this study, we tested the established decentralized MSR environment and the system that performs service search within that environment, and we discussed its advantages and limitations.

A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach (시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법)

  • Rho, Sang-Kyu;Park, Hyun-Jung;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.

Intelligent information filtering using rough sets

  • Ratanapakdee, Tithiwat;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1302-1306
    • /
    • 2004
  • This paper proposes a model for information filtering (IF) on the Web. The user information need is described into two levels in this model: profiles on category level, and Boolean queries on document level. To efficiently estimate the relevance between the user information need and documents by fuzzy, the user information need is treated as a rough set on the space of documents. The rough set decision theory is used to classify the new documents according to the user information need. In return for this, the new documents are divided into three parts: positive region, boundary region, and negative region. We modified user profile by the user's relevance feedback and discerning words in the documents. In experimental we compared the results of three methods, firstly is to search documents that are not passed the filtering system. Second, search documents that passed the filtering system. Lastly, search documents after modified user profile. The result from using these techniques can obtain higher precision.

  • PDF

SPARQL Query Automatic Transformation Method based on Keyword History Ontology for Semantic Information Retrieval

  • Jo, Dae Woong;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In semantic information retrieval, we first need to build domain ontology and second, we need to convert the users' search keywords into a standard query such as SPARQL. In this paper, we propose a method that can automatically convert the users' search keywords into the SPARQL queries. Furthermore, our method can ensure effective performance in a specific domain such as law. Our method constructs the keyword history ontology by associating each keyword with a series of information when there are multiple keywords. The constructed ontology will convert keyword history ontology into SPARQL query. The automatic transformation method of SPARQL query proposed in the paper is converted into the query statement that is deemed the most appropriate by the user's intended keywords. Our study is based on the existing legal ontology constructions that supplement and reconstruct schema and use it as experiment. In addition, design and implementation of a semantic search tool based on legal domain and conduct experiments. Based on the method proposed in this paper, the semantic information retrieval based on the keyword is made possible in a legal domain. And, such a method can be applied to the other domains.

Rule-based Semantic Search Techniques for Knowledge Commerce Services (지식 거래 서비스를 위한 규칙기반 시맨틱 검색 기법)

  • Song, Sung Kwang;Kim, Young Ji;Woo, Yong Tae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.91-103
    • /
    • 2010
  • This paper introduces efficient rule-based semantic search techniques to ontology-based knowledge commerce services. Primarily, the search techniques presented in this paper define rules of reasoning that are required for users to search using the concept of ontology, multiple characteristics, relations among concepts and data type. In addition, based on the defined rules, the rule-based reasoning techniques search ontology for knowledge commerce services. This paper explains the conversion rules of query which convert user's query language into semantic search words, and transitivity rules which enable users to search related tags, knowledge products and users. Rule-based sematic search techniques are also presented; these techniques comprise knowledge search modules that search ontology using validity examination of queries, query conversion modules for standardization and expansion of search words and rule-based reasoning. The techniques described in this paper can be applied to sematic knowledge search systems using tags, since transitivity reasoning, which uses tags, knowledge products, and relations among people, is possible. In addition, as related users can be searched using related tags, the techniques can also be employed to establish collaboration models or semantic communities.

Multi-Thread Based Image Retrieval Agent in Distributed Environment (다중스레드를 이용한 분산 환경에서의 이미지 검색 에이전트)

  • Cha Sang-Hwan;Kim Soon-Cheol;Hwang Byung-Kon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.355-361
    • /
    • 2005
  • This paper proposed a system collecting image information by agents in multi-threaded environment and then retrieving them with content based image retrieval. This system uses multi threads to retrieve web information effectively, then improves efficiency of CPU cycles to reduce latency time, which is the time requesting queries, executing communication processing 4hat the retrieval agents perform and filtering the retrieval results. Also, the agents for image retrieval use Java language, which is platform independent, to be suitable for distributed environment. Using JDBC to save the retrieved images, the agents are connected to database. The images themselves are stored in distributed agents' databases, and only the image indexes are stored in an index server so that the efficiency of storage and retrieval time can be improved.

  • PDF

Design and Implementation of Data Sharing Support System for Integrated Data Environment of Electronic Commerce for Business to Business (기업간 통합 데이터 환경을 위한 데이터공유 지원 시스험의 설계 및 구현)

  • Yun, Sun-Hee
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.1043-1054
    • /
    • 2004
  • The area of business applications in the internet are extended enormously in result of fast development of computing and communication technologies, increase of internet use, and use of intranet/extranet in enterprise information system. In recent days network computing technologies have been developed rapidly and the extended use of Internet applications for enterprises such as intranet/extarnet in and between enterprises has been increased enormously. Therefore the business in the future will be executed by Electronic Commerce based on Business to Business(B2B). <중 략) This paper introduce the design and implementation of the data sharing support system that can be accessed data transparently by the users of participated enterprises in the integrated data environment supporting B2B Electronic Commerce. The system uses Java/CORBA technology in Web environment, relational and object-oriented database system, Object Query Language (OQL) to process the queries of the file information.

  • PDF

Vertical Search Based on Multiple Entity-centric Unification (다중 개체 중심적 통합 방식의 버티컬 검색 - 학술 연구 정보 분석 서비스에의 적용 사례를 중심으로 -)

  • Jung, Han-Min;Lee, Mi-Kyoung;Sung, Won-Kyung;You, Beom-Jong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.253-256
    • /
    • 2009
  • This paper describes a vertical search system based on multiple entity-centric unification, which enables to deal with the search queries including multiple domains. To implement the system, we introduced two search technologies; one is for merging service components dynamically according to the entities in the search keywords, and the other is for searching fields with appropriate entities. Our current system includes about 453,000 overseas journal papers for article information search and two entity types; research topic and researcher.

  • PDF