• Title/Summary/Keyword: Weathered Granite Soils

Search Result 132, Processing Time 0.029 seconds

Characteristics of the Incompatible Element Contents of the Ginsengs from Keumsan (금산 지역 인삼의 비호정성 원소 함량 특성)

  • Song, Suck-Hwan;Yoo, Sun-Kyun;Min, Ell-Sik
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.137-152
    • /
    • 2006
  • This study is for chemical relationships between ginsengs(2, 3 and 4 yr) and soils from three representative soil types of Keumsan, shale(SL), phyllite(PH) and granite(GR). In the weathered soils, the GR is mainly high. Positive relationships are dominant, and negative correlations are shown in the Y-Nb and Nb-Ta pairs. In the field soils, the GR is high while the SL is low. Regardless of the localities, available correlation relationships are dominant in the GR, and dominant in the 3 year area. In the host rocks, high element contents are shown in the GR. Positive relationships, regardless of the localities, are shown in the Zr-Hf, Ta, Nb-Ta and Hf-Ta pairs. In the ginsengs, chemical contents are distinctive with the different ages. Positive relationships are shown in the Y-Nb pair of the SL, Rb-Y pair of the PH, and Rb-Sr pair of the GR. Relative ratios(GR/SL and GR/PH) of the ginsengs suggest that ginsengs from the GR are higher than those of SL and PH while in the comparisons between PH and SL, 2 year ginsengs are high in the SL and 4 year ginsengs are high in the PH. Relative ratios between weathered and field soils (weathered/field) suggest high element contents in the weathered soils from the SL and PH and in the relative ratios(weathered soil/host rock), high element contents in weathered soils. Relative ratios between field soils and ginsengs(field soil/ginseng), regardless of the ages, show several ten and hundred times, suggestive of high contents in the soils. Comparisons with the overall average contents of each area show differences of several ten to hundred times in the SL and PH, and of several to ten times in the GR. These relationships suggest that contents of the ginsengs from the GR are more similar to the soils relative to those of SL and PH.

Study on Electrical Resistivity Pattern of Soil Moisture Content with Model Experiments (토양의 함수율에 따른 전기비저항 반응 모형 실험 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Lee, Heui Soon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2013
  • Geophysical investigation in non-destructive testing is economically less expensive than boring testing and providing geotechnical information over wide-area. But, it provides only limited geotechnical information, which is hardly used to the design. Accordingly, we performed electrical resistivity experiments on large scale of soil model to analyze the correlation between electrical resistivity response and soil water contents. The soils used in the experiments were the Jumunjin standard sand and weathered granite soil. Each soil particle size distribution and coefficient of uniformity of experimental material obtained in the experiments were maintained in a state of the homogeneous. The specifications of the model used in this study is $160{\times}100{\times}50$(cm) of acrylic, and each soil was maintained at the height 30 cm. The water content were measured using the 5TE sensors (water contents sensors) which is installed 7 ~ 8 cm apart vertically by plugging to floor. The results of the resistivity behavior pattern for Jumunjin standard sand was found to be sensitive to the water content, while the weathered granite soil was showing lower resistivity over the time, and there was no significant change in behavior pattern observed. So, it results that the Jumunjin standard sand's particle current conduction was better than the weathered granite soil's particle through contact with the distilled water. This lab test was also compared with the result of a test bed site composed of similar weathered soil. It was confirmed that these experiments were underlying research of non-destructive investigation techniques to improve the accuracy to estimate the geotechnical parameter.

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

Dust Deposition and Weathering in Soils of Seoraksan (설악산 토양 내 황사의 퇴적과 풍화)

  • Jeong, Gi Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.255-264
    • /
    • 2021
  • Asian dust (Hwangsa) deposited on the surface of the Korean Peninsula is difficult to recognize their existence in mountainous terrain undergoing active erosion and weathering. This study examined Asian dust sediments mixed in soils by analysing clay mineralogy, mineral composition, and microtextures of fine silt (< 20 ㎛) in the alkali feldspar granite area of Seoraksan. The fine silt was composed of detrital particles derived from bedrocks, Asian dust sediments, and their weathering products. Clay minerals of 2:1 structural type, chlorite, amphibole, epidote, and Ca-bearing plagioclase were identified as eolian mineral particles. During the weathering of the bedrock composed of quartz and alkali feldspars, albite was partially weathered to produce small amounts of gibbsite and kaolin minerals. Hydroxy-Al interlayered clay minerals were formed by the exchange and fixation of polynuclear Al cationic species into the interlayers of expandable 2:1 clay minerals dominated by illite-smectite series clay minerals. Contribution of Asian dust to the fine silt of soils was estimated around 70% on the basis of total contents of 2:1 phyllosilicates.

Studies on Forest Soils in Korea (I) (한국(韓國)의 삼림토양(森林土壤)에 관(關)한 연구(硏究)(I))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.52-61
    • /
    • 1980
  • This study is carried out to learn the properties of forest soils in Korea and propose the reasonable management methods of forest land. Among 178 soil series surveyed until now in Korea forest soils include 64 series broken down according to the weathered products into 5 categories such as residual materials on mountain and hill, residual materials on rolling and hill, colluvial materials on local valley and fans, alluvial materials and volcanic ash soils. What discussed in this paper are classification system, parent rocks, texture class and drainage conditions of Korean forest soils. The characteristics of Korean forest soil properties classified in U.S.D.A. soil classification system are as follows: 1. Residual soils on mountain and hill (29 soil series) are almost Lithosols without any distinct soil profile development. They have loamy skeletal (11 series), coarse loamy (5 series), fine loamy (3 series), and fine clayey soils (3 series). Their drainage conditions are somewhat excessively drained in 16 series and well drained in 7 series. 2. Residual soils on rolling and hill (19 series) are Red-Yellow Podzolic soils with well developed soil profiles. They have coarse and fine loamy texture in 12 series and fine clayey texture in 5 series mostly with well drained condition. 3. Colluvial soils on local valley and fans (13 series) include mostly Regosols and some Red-Yellow Podzolic Soils and Acid Brown Forest Soils. They have loamy skeletal (4 series), coarse loamy (3 series), fine loamy (3 series), and fine clayey soils (2 series) with well drained condition. 4. Soil textures of weathered products of parent rocks are as follows: 1) Parent rocks producing coarse texture soils are rhyolite, granite gneiss, schist, shale, sandstone, siltstone, and conglomerate. 2) Parent rocks producing fine and heavy texture soils are limestone, basalt, gabbro, and andesite porphyry. 3) Granite is a parent rock producing various textured soils.

  • PDF

Friction Characteristics of Geogrid -Light Weight Soil Mixed with Small Pieces of Waste EPS (지오그리드-폐 EPS조각 혼합경량토의 마찰특성)

  • 김홍택;방윤경
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.163-184
    • /
    • 1996
  • In this study, physical and geotechnical properties of the light weight mixed soil( weathered granite soil mixed with small pieces of waste EPS) were analyzed by laboratory experiments to examine its suitability for backfill materials of the reinforced-earth walls. Friction characteristics of geogrid-light weight sized soil were also investigated by performing the pullout tests for two types of geogrids having different flexural rigidity. Also a procedure was proposed to evaluate friction strength between geogrid and light weight miffed soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. By the procedure proposed in this study, values of the calibration coefficients ul and uf applicable for the evaluation of friction strengths between two types of geogrids and light weight mixed soils were further presented.

  • PDF

Effect of Temperature on Particle Structure and Strength Characteristic of Sand and Weathered Granite Soil (온도변화가 모래 및 화강풍화토의 입자구조 및 강도 특성에 미치는 영향)

  • Yoo, Chung-Sik;Shin, Seung-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.57-70
    • /
    • 2015
  • This paper presents the results of an investigation into the effect of forced temperature change cycles on physical and mechanical properties of sand and weathered granite soil. The effect of forced temperature change cylecs on the particle arrangement and the thermal conductivity was first investigated. A series of triaxial compression tests on the soils were also performed to look into the effect of temperature change cycles on the stress-strain-strength behavior. The results indicated that the forced temperature change cycle does not significantly affect the particle arrangement and thermal conductivity. It is shown however that the heating duration showed some effect on the deviatoric stress at failure while no significant effect due to the number of heating-cooling cycle was observed.

Slope Stability Analysis by Optimization Technique Considering Unsaturated Characteristics of Weathered Granite Soil (화강풍화토 지반의 불포화 특성을 고려한 최적화기법에 의한 사면안정해석 방법)

  • 이승래;이성진;변위용;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.123-133
    • /
    • 2001
  • Since most of soil slopes are in an unsaturated state, it is necessary to consider the unsaturated characteristics of soil slopes, in order to obtain more reasonable results. Therefore in this study we supplemented a slope stability analysis program to consider them, based on the concept of limit equilibrium. We also applied an optimization technique to search for a failure surface. Besides, we carried out experiments to obtain the unsaturated soil properties required in the analysis with weathered granite soils. We formulated a nonlinear apparent cohesion relationship with the matrix suction to be able to apply the unsaturated shear strength characteristics to the stability analysis. In addition, we intended to obtain more accurate soil water characteristic curves(SWCC) by measuring the change in volume of the specimen in the SWCC tests. As a result, we could appropriately assess the change of the safety factor according to the rainfall intensity and duration, by considering the variation of suction, permeability, and shear strength caused by the infiltration of rainfall into slopes.

  • PDF

Prediction of Saturation Time for the Soil Slopes due to Rainfalls (지속적인 강우에 의한 토사사면의 포화시간 예측)

  • Park, Sungwon;Han, Taekon;Kim, Hongtaek;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.67-74
    • /
    • 2007
  • Many studies for slope stability studies have indicated that the infiltration of rainwater into a slope decrease the slope stability. In order to minimize damage caused by slope failure, most design codes suggest that the slope stability be analyzed by saturated condition during rainy season. However it would be excessively conservative condition that every soil slope is saturated in rainy season irrespective of rainfall intensity, soil type and slope geometry. In addition, because most soil slopes are in an unsaturated state, it is necessary to consider the unsaturated characteristics of slope. This paper suggests a prediction method of saturation time for the weathered granite soil slopes due to rainfalls. The finite element analysis of transient water flow through unsaturated slope was used to investigate effects of soil-water characteristics, permeability at saturation, slope geometry, and rainfall intensity. From the result of these analyses, the prediction charts considering soil-water characteristics, permeability at saturation, and slope height were proposed in this study. It is possible to the time required to be saturated slope after rainfall.

  • PDF

A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM (토압식 쉴드 TBM 굴진을 위한 화강풍화토의 컨디셔닝을 평가하는 간편 시험법)

  • Kim, Tae-Hwan;Kwon, Young-Sam;Chung, Heeyoung;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1049-1060
    • /
    • 2018
  • Soil conditioning is one of the key factors for successfull tunnel excavations utilizing the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) by increasing the tunnel face stability and extraction efficiency of excavated soils. In this study, conditioning agents are mixed with the weathered granite soils which are abundant in the Korean peninsula and the workability of the resulting mixture is evaluated through the slump tests to derive and propose the most suitable conditioning agent as well as the most appropriate agent mix ratios. However, since it is cumbersome to perform the slump tests all the time either in the laboratory or in-situ, a simpler test may be needed instead of the slump test; the fall cone test was proposed as a substitute. In this paper, the correlation between the slump value obtained from the slump test and the cone penetration depth obtained from the proposed fall cone test was obtained. Test results showed that a very good correlation between two was observed; it means that the simpler fall cone test can be used to assess the suitability of the conditioned soils instead of the more cumbersome slump test.