DOI QR코드

DOI QR Code

Study on Electrical Resistivity Pattern of Soil Moisture Content with Model Experiments

토양의 함수율에 따른 전기비저항 반응 모형 실험 연구

  • Ji, Yoonsoo (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Oh, Seokhoon (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Lee, Heui Soon (Geolux Inc.)
  • Received : 2012.10.18
  • Accepted : 2013.04.16
  • Published : 2013.05.31

Abstract

Geophysical investigation in non-destructive testing is economically less expensive than boring testing and providing geotechnical information over wide-area. But, it provides only limited geotechnical information, which is hardly used to the design. Accordingly, we performed electrical resistivity experiments on large scale of soil model to analyze the correlation between electrical resistivity response and soil water contents. The soils used in the experiments were the Jumunjin standard sand and weathered granite soil. Each soil particle size distribution and coefficient of uniformity of experimental material obtained in the experiments were maintained in a state of the homogeneous. The specifications of the model used in this study is $160{\times}100{\times}50$(cm) of acrylic, and each soil was maintained at the height 30 cm. The water content were measured using the 5TE sensors (water contents sensors) which is installed 7 ~ 8 cm apart vertically by plugging to floor. The results of the resistivity behavior pattern for Jumunjin standard sand was found to be sensitive to the water content, while the weathered granite soil was showing lower resistivity over the time, and there was no significant change in behavior pattern observed. So, it results that the Jumunjin standard sand's particle current conduction was better than the weathered granite soil's particle through contact with the distilled water. This lab test was also compared with the result of a test bed site composed of similar weathered soil. It was confirmed that these experiments were underlying research of non-destructive investigation techniques to improve the accuracy to estimate the geotechnical parameter.

지반조사에서 비파괴 조사 기술은 시추조사보다 경제적으로 비용이 덜 들고 광역에 걸친 지반정보를 제공하는 장점이 있다. 하지만 지반설계정수로서 적용하기에는 어려운 한정된 정보만을 제공하게 된다. 이를 극복하기 위해, 비파괴 조사 방법 중 하나인 전기비저항 탐사를 모형토조실험에 적용하여, 토질상태에 따른 비저항 반응과 함수비에 따른 비저항 반응을 분석하여 비저항 거동 양상에 대한 연구를 수행하였다. 실험에 사용한 토질은 주문진 표준사, 마사토이며 각 토질의 입도 분포, 균등계수를 구하여 실험에 있어 실험재료의 균질한 상태를 유지하였다. 실험에 사용한 모형의 제원은 $160{\times}100{\times}50$ (cm)의 아크릴 재질 토조이며, 각 토질의 높이는 30 cm를 유지하였다. 5TE(함수비측정센서)센서를 7 ~ 8cm 간격으로 수직하게 꽂아 층별 함수비를 측정하였다. 모형실험 결과 주문진 표준사는 비저항 거동 양상이 함수비에 민감하게 반응하는 것을 알 수 있었으며, 마사토는 함수비에 따라 비저항이 낮아진 후에도 시간경과에 따른 거동 양상에 큰 변화가 없는 것을 관찰하였다. 또한 토조 실험에 사용된 토양과 유사한 테스트 베드를 선정하여 그 반응을 비교 분석하였다. 이러한 실험을 통해 토질 상태와 함수비에 따른 다양한 비저항 거동 양상 자료를 수집하고, 비파괴 조사기술의 정확도를 향상 시켜 나간다면 지반설계정수를 산정하는데 있어 기초적인 연구가 될 수 있음을 확인하였다.

Keywords

References

  1. Abu-Hassanein, Z. S., Benson, C. H., and Blotz, L. R., 1996, Eletrical resistivity of compacted clays, Journal of Geotechnical Engineering, 122, 397-406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  2. Casagrande, A., 1948, Classification and identification of soils, American Society of Civil Engineers of Soils, 113, 901-991.
  3. Chung, S. H., Lee, M. J., Kim, J. H, Cho, S. J., and Song, Y. H., 1999, 3-D resistivity method for geotechnical survey, KSEG, 2nd Conference, 21-36.
  4. Chung, S. G., Kwag, J. M., Giad, P. H., Baek, S. H., and Prasad, K. N., 2004, Study of soil disturbance of Pusan clays with reference to drilling, sampling and extruding, Geotechnique, 54, 61-65. https://doi.org/10.1680/geot.2004.54.1.61
  5. Kaya, A., and Fang, H. Y., 1997, Identification of contaminated soils by dielectric constant and electrical conductivity, Journal of Environmental Engineering, 123, 169-177. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(169)
  6. Kim, J. H., Song, Y. H., and Chung, S. H., 2000, Subsurface imaging using electric and EM method, Conference by KSEG and KGES, 121-154.
  7. McCarter, W. K., 1984, The electrical resistivity characteristics of compacted clays, Geotechnique, 34, 263-267. https://doi.org/10.1680/geot.1984.34.2.263
  8. Oh, M. H., and Park, J. B., 2000, Laboratory tests for the development of the contaminant leakage detection system in soil, Proceedings of GeoEng2000, International Conference on Geotechnical & Geological Engineering, Melbourne, Australia, 2, 286.
  9. Park, S. G., and Kim, H. J., 1999, Application of geophysical exploration to geotechnical survey in Japan, KSEG, 2nd Conference, 1-20.
  10. Park, S. G., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Mulli-Tamsa, 8, 177-183.
  11. Saarenketo, T., 1998, Electrical properties of water in clay and silty soils, Journal of Applied Geophysics, 40, 73-88. https://doi.org/10.1016/S0926-9851(98)00017-2
  12. Sakaguchi, K., 2008, Proposal of engineer against a geophysical exploration application, KSGE, 44, 600-610.
  13. Shin, E. C., Lee, H. J., and Oh, Y. I., 2004, Prediction of soilwater characteristic curve and unsaturated permeability coefficient of reclaimed ground, Journal of the Korean Geotechnical Society, 20, 109-120.
  14. Yi, M.-J., Kim, J.-H., and Chung, S.-H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68, 931-941. https://doi.org/10.1190/1.1581045
  15. Yoon, G. I., Oh, M. H., and Park, J. B., 2002, Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer, Environmental Geology, 43, 18-28. https://doi.org/10.1007/s00254-002-0649-1
  16. Yoon, H. K., Kim, D. H., Lee W., and Lee, J. S., 2010, Field elastic wave and electrical resistivity penetrometer for evaluation of elastic moduli void ratio, Journal of the Korean Society of Civil Engineers C, 30, 85-93.
  17. Yoon, Y. Y., Kim. Y. J., Kim. Y. S., and Choi, E. H., 2009, Evaluation on disturbanc of undisturbed cla due to sampling methods, Conference Co-Hosted by KISTEC & KGES, KGES, 209-214.