• Title/Summary/Keyword: Weather Changes

Search Result 661, Processing Time 0.025 seconds

The Effects of Concept Sketches on the Understanding and Attitude in High School Student's learning of Weather Change (날씨 변화 학습에서 개념스케치 활용이 고등학생의 개념 이해도와 과학 태도에 미치는 영향)

  • Shin, Hyun Young;Kim, Hak Sung;Sohn, Jungjoo
    • Journal of Science Education
    • /
    • v.34 no.1
    • /
    • pp.12-22
    • /
    • 2010
  • The purpose of this study was to investigate the effect of concept sketches on the understanding and scientific attitude in high school student's learning of weather change. Among the various fields of meteorology, especially in weather change, we often deal with the change of the spatiotemporal change in an abstract way. So making use of 'Concept Sketches'- simplified sketches which represent the main features, principles, processes and interrelationships of the learning contents using some concise explanations, signs and terms - could help the students learn the phenomena of weather change efficiently. This study's aim was to check up the effect and analyze the results of the lesson including the concept sketches. As a result of this study, concept sketches group showed significant improvement compared to the other groups in understanding of weather change and in scientific attitude, too. In students' recognition research of concept sketches showed that students found the class more interesting with improved concentration and had a chance to review through concept sketching, which is helpful for their learning. Considering the above research results, the study which applies concept sketching required the students to actively process their knowledge, and had a positive effect on the understanding of weather changes. Most of all, drawing the pictures which is a familiar activity helped the students to take part in the class eagerly.

  • PDF

The Analysis of planning methode and case study for Model 'Climate Change Adaptation City' (기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석)

  • Kim, Jongkon
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica (극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구)

  • Kwon, Hataek;Park, Sang-Jong;Lee, Solji;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.277-288
    • /
    • 2016
  • Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.

Characteristics of Weather and Climate over the Okhotsk Sea

  • KIM Young Seup;HAN Young Ho;CHEONG Hyeong Bin;DASHKO Nina A.;PESTEREVA Nina M.;VARLAMOV Sergey M.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.974-983
    • /
    • 1997
  • The Okhotsk Sea is unique natural object with climatic peculiarities. The climate of the Okhotsk Sea results from the general distribution of solar radiation during a year, and the characteristics of the atmospheric circulation that varies through a year: In cold half year the main pressure formations are Siberian high and Aleutian low. Asian low centered on Afghanistan dominates over the Asian continent in summer. The North-Pacific sea surface is under effect of permanent North Pacific high. The changes in their position from year to year are very significant. The anticyclonic activity over the Far Eastern Seas is one of the main factors for the formation of weather anomalies over the adjacent territories. The analysis of summer weather characteristics over the coast of Okhotsk and East Sea using the data obtained from Hydrometeorological stations during $1949\~1990$ showed that, to a great extent, distribution of the air temperature depends on thermal state of the Okhotsk Sea and atmospheric circulation over it. We show some relations between weather characteristics and the intensity of atmospheric action center for the North Pacific high in summer when its ridge propagates to Okhotsk Sea. Correlation coefficients between air pressure over the Okhotsk Sea and air temperature for the coastal areas reach up to 0.7. Analysis of the spatial-temporal distribution of main meteorological values over the Okhotsk Sea such as air pressure, and air temperature are also performed.

  • PDF

A Review on the Decision-making Process for Extratropical Transition of Typhoon from an Operational Forecast Point of View (현업예보 관점에서 태풍의 온대저기압화 판단 과정에 대한 고찰)

  • Cha, Eun-Jeong;Shim, Jae-Kwan;Kwon, H.Joe
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.567-578
    • /
    • 2008
  • The extratropically transitioning cyclones have been shown to have a large effect on weather system in the midlatitues and cause sometimes the severe weather phenomena. However, both operational forecasting and research aspect of ET remain a significant challenge. Because it is difficult to distinguish ET stage due to obscure configuration of the cyclone itself. Furthermore, any definition of ET should not only be precise enough to satisfy the needs of the operational and research communities. Therefore, the "operational deterministic process for ET" was proposed and has been used to diagnose both structure and subsequent process of ET in 2007. In this study, it has been examined the maximum wind and SST in the 1st step, satellite image in the 2nd step, sounding in the 3rd step, surface weather chart analysis in the final step. This operational manual has allowed better monitoring and understanding of the changes in the structure as ET occurs.

Yield and Production Forecasting of Paddy Rice at a Sub-county Scale Resolution by Using Crop Simulation and Weather Interpolation Techniques (기상자료 공간내삽과 작물 생육모의기법에 의한 전국의 읍면 단위 쌀 생산량 예측)

  • 윤진일;조경숙
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Crop status monitoring and yield prediction at higher spatial resolution is a valuable tool in various decision making processes including agricultural policy making by the national and local governments. A prototype crop forecasting system was developed to project the size of rice crop across geographic areas nationwide, based on daily weather pattern. The system consists of crop models and the input data for 1,455 cultivation zone units (the smallest administrative unit of local government in South Korea called "Myun") making up the coterminous South Korea. CERES-rice, a rice crop growth simulation model, was tuned to have genetic characteristics pertinent to domestic cultivars. Daily maximum/minimum temperature, solar radiation, and precipitation surface on 1km by 1km grid spacing were prepared by a spatial interpolation of 63 point observations from the Korea Meteorological Administration network. Spatial mean weather data were derived for each Myun and transformed to the model input format. Soil characteristics and management information at each Myun were available from the Rural Development Administration. The system was applied to the forecasting of national rice production for the recent 3 years (1997 to 1999). The model was run with the past weather data as of September 15 each year, which is about a month earlier than the actual harvest date. Simulated yields of 1,455 Myuns were grouped into 162 counties by acreage-weighted summation to enable the validation, since the official production statistics from the Ministry of Agriculture and Forestry is on the county basis. Forecast yields were less sensitive to the changes in annual climate than the reported yields and there was a relatively weak correlation between the forecast and the reported yields. However, the projected size of rice crop at each county, which was obtained by multiplication of the mean yield with the acreage, was close to the reported production with the $r^2$ values higher than 0.97 in all three years.

  • PDF

Implementation of machine learning-based prediction model for solar power generation (빅데이터를 활용한 머신러닝 기반 태양에너지 발전량 예측 모델)

  • Jong-Min Kim;Joon-hyung Lee
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.99-104
    • /
    • 2022
  • This study provided a prediction model for solar energy production in Yeongam province, Jeollanam-do. The model was derived from the correlation between climate changes and solar power production in Yeongam province, Jeollanam-do, and presented a prediction of solar power generation through the regression analysis of 6 parameters related to weather and solar power generation. The data used in this study were the weather and photovoltaic production data from January in 2016 to December in 2019 provided by public data. Based on the data, the machine learning technique was used to analyzed the correlation between weather change and solar energy production and derived to the prediction model. The model showed that the photovoltaic production can be categorized by the three-stage production index and will be used as an important barometer in the agriculture activity and the use of photovoltaic electricity.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

Effect of Thermal Diffusion on Autumn Traffic in Street Space (가을철 교통조건에 따른 가로공간 열확산 분포 영향)

  • Yoon, Yong-Han;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.467-481
    • /
    • 2017
  • This study sought to determine the changes in weather conditions in urban streets, along with conditions of traffic and roads in urban areas. The variations in weather conditions depending on traffic differed according to distance. First, the temperature difference measured by traffic results is as follows: T1 point $1.03^{\circ}C$, T2 point $1.04^{\circ}C$, T3 point $0.9^{\circ}C$, T4 point $1.01^{\circ}C$, and T5 point $0.31^{\circ}C$. The average difference between the measured temperatures by the point of measurement was $0.86^{\circ}C$. The changes in wind velocity according to traffic volume results of the measurements is T1 point 1.32 m/s, T2 point 0.80 m/s, T3 point 0.29 m/s, T4 point 0.04 m/s, and T5 point 0.09 m/s. The difference between the average wind speeds was 0.51 m/s and traffic jams caused substantial differences in distance. The relative humidity tended to be inversely proportional to temperature. The measurements results ares T1 point 2.29%, T2 point 2.67%, T3 point 2.47%, T4 point 2.16%, and T5 point 0.91% The difference between the average relative humidity was 7.3%. In case of independent sampling T test according to traffic volume, changes in wind velocity and temperature were directly proportional to the level of statistical significance(p<0.01). On the other hand, relative humidity tended to be inversely proportional; however, there was no statistical significance.

Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia (지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향)

  • Kang, Jeon-Ho;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.415-427
    • /
    • 2011
  • In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.