DOI QR코드

DOI QR Code

Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia

지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향

  • Received : 2011.09.17
  • Accepted : 2011.11.29
  • Published : 2011.12.31

Abstract

In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.

Keywords

References

  1. Case, J. L., W. L. Crosson, S. V. Kumar, W. M. Lapenta, and C. D. Peters-Lidard, 2008: Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model. J. Hydrometeor., 9, 1249-1266, doi:10.1175/2008JHM990.1.
  2. Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193-202. https://doi.org/10.1002/qj.49710142802
  3. Chase, T. N., R. A. Pielke Sr, T. G. F. Kittel, R. Nemani, and S. W. Running, 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dyn., 16, 93-105. https://doi.org/10.1007/s003820050007
  4. Cox, P. M., 2001: Description of the TRIFFID dynamic global vegetation model. Technical Note 24, Hadley Centre, Met Office.
  5. Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J Smith, 1999: The impact of new land surface physics on the GCM simulations of climate and climate sensitivity. Clim. Dyn., 15, 183-203. https://doi.org/10.1007/s003820050276
  6. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  7. Dickinson, R. E., and A. Henderson-Sellers, 1988: Modelling tropical deforestation: A study of GCM land-surface parameterizations. Quart. J. Roy. Meteor. Soc., 114, 439-462. https://doi.org/10.1002/qj.49711448009
  8. Ek, M. B., K. E. Mitchel, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.
  9. Essery, R. L. H., M. J. Best, P. M. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Techinical Note 30. Met Office Bracknell.
  10. Jin, J., S. Lu, S. Li, and N. L. Miller, 2010: Impacts of land use change on the local climate over the Tibetan Plateau. Advances in Meteor., doi:10.1155/2010/837480.
  11. Kang, J. H., M. S. Suh, and C. H. Kwak, 2010: Land cover classification over east Asian region using recent MODIS NDVI data (2006-1008). Atmosphere, 20(4), 415-426.
  12. Kang, H. S. and S. Y. Hong, 2008: An assessment of the land surface parameters on the simulated regional climate circulations: The 1997 and 1998 east Asian summer monsoon cases. J. Geophys. Res., 113, D15121, doi:10.1029/2007JD009499.
  13. Kumar, S. V., C. D. Peters-Lidard, J. L. Eastman, and W. K. Tao, 2007: An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Modell. Software, 23, 169-181.
  14. Kumar, S. V., C. D. Peters-Lidard, Y. Tian, P. R. Houser, J. Geiger, S. Olden, L. Lighty, J. L. Eastman, B. Doty, P. Dirmeyer, J. Adams, K. Mitchell, E. F. Wood and J. Sheffield, 2006. Land information system: an interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 1402-1415. https://doi.org/10.1016/j.envsoft.2005.07.004
  15. Lawrence, D. M., and J. M. Slingo, 2004: An annual cycle of vegetation in a GCM Part I: Implementation and impact on evaporation. Climate Dynamics, 22, 87-105. https://doi.org/10.1007/s00382-003-0366-9
  16. Lobell, D. B., and C. Bonfils, 2008: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934-2002. J. Climate, 21, 2063-2071. https://doi.org/10.1175/2007JCLI1755.1
  17. Lynn, B. H., D. Rind, and R. Avissar, 1995: The importance of mesoscale circulations generated by subgrid-scale landscape heterogeneties in general circulation models. J. Climate, 8, 191-205. https://doi.org/10.1175/1520-0442(1995)008<0191:TIOMCG>2.0.CO;2
  18. Manabe, S., 1969: Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the Earth's surface. Mon. Wea. Rev., 97, 739-774. https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2
  19. Ozdogan, M., M. Rodellm H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hyerometeor., 11, 171-184. https://doi.org/10.1175/2009JHM1116.1
  20. Rha, D. K., M. S. Suh, and C. H. Kwak, 2005: Impacts of land cover changes on the simulation of heavy rainfall over South Korea. J. Korean Meteor. Soc., 41, 809-824.
  21. Rha, D. K., M. S. Suh, C. H. Kwak, and J. H. Kang, 2008: Impacts of an improved land cover map over South Korea on the simulated surface variables in MM5. APJAS, 44, 313-323.
  22. Saulo, C., L. Ferreira, J. N. Paegle, M. Seluchi, and J. Ruiz., 2010: Land-atmosphere interactions during northwestern Argentina low event. Mon. Weath., Rev., 138, 2481-2498. https://doi.org/10.1175/2010MWR3227.1
  23. Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 305-331. https://doi.org/10.1175/1520-0469(1986)043<0305:OMDOGS>2.0.CO;2
  24. Suh, M. S. and D. K. Lee, 2004: Impacts of land use/cover changes on surface climate over East Asia for extreme climate cases using RegCM2. J. Geophys. Res., 109, D02108, 14pp.
  25. Taylor, C.M., E.F. Lambin, N. Stephenne, R. J. Harding, and R. L. H. Essery, 2002: The influence of land use change on climate in the Sahel, J. Climate, 15, 3615-3629. https://doi.org/10.1175/1520-0442(2002)015<3615:TIOLUC>2.0.CO;2
  26. Wang, Y., C. E. Woodcock, W. Buermannm, P. Stenberg, P. Voipio, H. Smolander, T. Hame, Y. Tian, J. Hu, Y. Knyazikhin, and R. B. Myneni, 2004: Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sens. Environ., 91, 114-127, doi:10.1016/j.rse.2004.02.007.
  27. Xue, Y. and J. Shukla, 1993: The influence of land-surface properties on Sahel climate. 1. Desertification. J. Climate, 6(2), 232-254.