• Title/Summary/Keyword: Weapon effectiveness

Search Result 169, Processing Time 0.022 seconds

Aggregation of Measures of Effectiveness with Constant Sum Scaling Method and Multiple Regression

  • Kim, Hyung-Bae
    • Journal of the military operations research society of Korea
    • /
    • v.5 no.2
    • /
    • pp.27-38
    • /
    • 1979
  • This method explores a method of aggregating the measures of effectiveness of a weapon system from its characteristics. With this method, the constant sum method and multiple regression are used to develop a functional relationship between system effectiveness and system characteristics. As an example, a study of a tank weapon system was${\cdot}$conducted with data from the U.S. Army Armor School. It was concluded that the aggregation method is feasible, and that for the tank system studied, the reciprocals of system characteristics give a good estimating equation for measuring tank system effectiveness.

  • PDF

Hitting Probability on the Moving Target (이동표적에 대한 적중확률)

  • Oh H.J.
    • Journal of the military operations research society of Korea
    • /
    • v.1 no.1
    • /
    • pp.111-129
    • /
    • 1975
  • U.S. Air Force Regulation 80-1 defines that a weapon system is composed of equipments, skills, and techniques, the composite of which ferns an instrument of combat. The complete weapon system includes all related facilities, equipments, materials, services, and personnels required for the operation of the system, so that the instrument of combat can be considered as a self-sufficient unit of striking power in its intended operational environment. Effectiveness of a weapon system can be expressed as a function of its liability, reliability and performance capability. Among these attributes which influence the weapon effectiveness, performance capability is considered to be the most critical factor for many weapon systems. In order to illustrate the application of the methodology of performance capability, a specific ease study on the effectiveness of Vulcan anti-air craft gun system is presented with special emphasis on hitting probability on moving targets, effects of artificial rounds dispersion, and several principles related to the deployment of the system. This thesis includes the thorough survey of the possibility of calculating the absolute value of hitting probability on moving targets, indicates that the effects of artificial rounds dispersion increase the value of probability only when the total number of rounds fired within fire range exceeds a certain critical number, and suggests that concentrated guns deployment is better than scattered deployment in order to obtain higher probability and lower average amount of rounds if it is assumed that the effects of counter-attack from enemy threats are not serious.

  • PDF

A Study on Effectiveness Analysis of K2 system with Weapon's unit cost (무기체계 단위비용을 고려한 K2 체계의 효과분석 방법 연구)

  • Jung, Byungki
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.31-39
    • /
    • 2017
  • This paper analyses the effectiveness of Kill Chain (KC) and Korea Air and Missile Defense (KAMD), also known as the K2 systems, using monte carlo simulation. It is assumed that the K2 systems are consisted with unitary KC and multi-layered (upper-tier and lower-tier) KAMD. And each system has two or three arbitrary weapon systems and its combination makes 12 scenarios. Measures of effectiveness (MOE) of the K2 systems were defined as ratio of eliminated ballistic missiles from total threats. And total cost was calculated by number of weapon launched and its unit cost. MOE and total cost of the K2 systems were estimated using monte carlo simulation with a thousand iteration for each scenario. Cost-effectiveness analysis was performed and the best candidate was selected using fixed effectiveness approach. As a result, the performances of KC are prime factor that affects both effectiveness and total cost of the K2 systems. It is also, acquired proper level of lower-tier KAMD to achieve desired defense effectiveness. For future work, it needs to be performed cost-effectiveness analysis based on practical specification and life cycle cost of weapon systems.

A Study on the Artillery shell's EFD based on Charge (장약에 기반한 포병탄 EFD 산출 모형에 관한 연구)

  • Kim, Hyunsik;Ma, Jungmok
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • Modeling and simulation(M&S) method are used to quantify the weapon effectiveness. The weapon effectiveness of artillery shells was also partially studied, but there was a lack of research on the effects of the choice of charge. Therefore, this paper presents an artillery shell's EFD(Expected Fractional Damage) calculation model based on the charge and identifies differences in the weapon effectiveness of 3D building targets according to the selection of the charge. First, the input data of the calculation model was collected and a required number of shoots was calculated to achieve the desired effects using the proposed model. Finally, a paired sample t-test was conducted to verify the proposed model.

Interrelation Analysis of UGV Operational Capability and Combat Effectiveness using AnyLogic Simulation (애니로직 시뮬레이션을 이용한 무인지상차량 운용성능과 전투효과의 연관성 분석)

  • Lee, Jaeyeong;Shin, Sunwoo;Kim, Junsoo;Bae, Sungmin;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In modern warfare, the number of unmanned systems grow faster than any other weapon systems. Therefore, it is very important to predict and measure the combat effectiveness (CE) of unmanned weapon systems in battlefield for deciding defense budget to acquire those systems. In general, quantitative calculation of weapon effectiveness under complicated battlefield is difficult based on the future network centric warfare. Hence, many papers studied how to measure the combat effectiveness and tried to study a lot of related issues about it. However, there are few papers dealing with the relationship between the UGV (Unmanned Ground Vehicle)'s performance and CE in a ground battlefield. In this paper, we do the sensitivity analysis based on a given scenario in a small unit battle. In order to do that, we developed simulation model using AnyLogic and changed the input parameters such as detection and hitting probabilities. We also assess the simulation outputs according to the variation of input parameters. The MOE used in this simulation model output is survival ratio for Blue force. We hope that this paper will be useful to find which input variable is more effective to increase combat effectiveness in a small unit ground battlefield.

A Case Study on Military Modeling and Simulation for SBA'sEffectiveness Estimation (SBA 효과도 분석을 위한 국방 모의 실험 사례분석)

  • Choi, Dal-Nim;Kim, Hyung-Jong
    • Journal of Software Engineering Society
    • /
    • v.24 no.3
    • /
    • pp.91-99
    • /
    • 2011
  • The weapon system acquisition for national defense is too costly, risky and requires high quality result. Because of these characteristics of the weapon system acquisition, the modeling and simulation is a prerequisite process for enhancing the effectiveness and efficiency of weapon system acquisition. We call the process as SBA (Simulation Based Acquisition). However the modeling and simulation entails costs of model development, execution and analysis. Thus, the SBA's effectiveness analysis is needed. Especially, we developed 4 types of index which represent the effectiveness thoroughly and we applied them to various weapon systems' acquisition process. This work presents the necessity of SBA by showing the application of suggested effectiveness index in various defense weapon system acquisition cases.

  • PDF

An Extension of MSDL for Obtaining Weapon Effectiveness Data in a Military Simulation (국방 시뮬레이션에서 무기효과 데이터 획득을 위한 MSDL의 확장)

  • Lee, Sangjin;Oh, Hyun-Shik;Kim, Dohyung;Rhie, Ye Lim;Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Many factors such as wind direction, wind strength, temperature, and obstacles affect a munition's trajectory. Since these factors eventually determines the probability of hit and the hitting point of a target, these factors should be considered to obtain reliable weapon effectiveness data. In this study, we propose the extension of the MSDL(Military Scenario Definition Language) to reflect these factors to improve the reliability of weapon effectiveness data. Based on the existing MSDL, which has been used to set the initial condition of a military simulation scenarios, the newly identified subelements are added in ScenarioID, Environment, Organizations, and Installations as a scenario schema. Also, DamageAssessment and DesignOfExperiments element are added to make weapon effectiveness data easily. The extended MSDL enables to automatically generate the simulation scenarios that reflect various factors which affect the probability of hit or kill. This extended MSDL is applied to an integrated simulation software of weapon systems, named AddSIM version 4.0 for generation of weapon effectiveness data.

A Study on the Accuracy Analysis for Air-to-Ground Weapon Delivery (공대지 무장투하정확도 해석에 대한 연구)

  • Jo, Han-Sang;Song, Chae-Il;Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.741-746
    • /
    • 2007
  • In this paper, we propose an accuracy analysis method for air-to-ground weapon delivery. The lethality, which is one of the most important factor to evaluate combat effectiveness of a fighter, depends on the capability to improve the accuracy of the conventional weapon delivery. We present error elements which affect the error analysis for air-to-ground weapon delivery from the initial design phase to the final validation phase. And we introduce an accuracy analysis method to reflect the error elements and to evaluate them quantitatively. We assume zero bias-error and consider random error for the weapon delivery accuracy analysis.

A Study on the Development of Interactive Electronic Technical Manual to Improve the Maintainability for Underwater Guided Weapon (수중유도무기의 정비성 향상을 위한 전자식 기술교범 개발에 관한 연구)

  • Shin, Ju-Hwan;Yun, Won-Young
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.308-316
    • /
    • 2005
  • Delayed repair to the failure of weapon system can cause enormous damages to military operation. Various materials like diagnostic equipment, general and special tools, technical manuals(maintenance manual and illustrated parts breakdown) and drawing documents are required for maintenance. For existing weapon systems the distributed environment of these various materials reduces the maintenance effectiveness of maintenance crew. In this paper, to provide the information of maintenance procedures and supply to the maintenance crew we develope a digital interactive electronic technical manual of the technical documents which can be used easily in computer through question and answer method and improve maintenance effectiveness and minimized repairing time.

An Ontology-based Cloud Storage for Reusing Weapon Models (무기체계 모델 재사용을 위한 온톨로지 기반 클라우드 저장소 연구)

  • Kim, Tae-Sup;Park, Chan-Jong;Kim, Hyun-Hwi;Lee, Kang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • Defense Modeling and Simulation aims to provide a computerized war environment where we can analyze weapon systems realistically. As we invest significant efforts to represent weapon systems and their operational environments on the computer, there has been an increasing need to reuse predefined weapon models. In this paper, we introduce OB-Cloud (Ontology-Based Cloud storage) to utilize predefined weapon models. OB-Cloud has been implemented as a repository for OpenSIM (Open Simulation engine for Interoperable Models), which is an integrated simulation environment for aiding weapons effectiveness analysis, under the development of our research team. OB-Cloud uses weapon ontology and thesaurus dictionaries to provide semantic search for reusable models. In this paper, we present repository services of OB-Cloud, including registration of weapon models and semantic retrieval of similar models, and illustrate how we can improve reusability of weapon models, through an example.