• 제목/요약/키워드: Weakly Lindelof space

검색결과 6건 처리시간 0.016초

Minimal basically disconnected covers of countably locally weakly Lindelof spaces

  • 김창일
    • 한국수학사학회지
    • /
    • 제16권1호
    • /
    • pp.73-78
    • /
    • 2003
  • Observing that if f: $Y{\leftrightarro}$Χ is a covering map and Χ is a countably locally weakly Lindelof space, then Y is countably locally weakly Lindelof and that every dense countably weakly Lindelof subspace of a basically disconnected space is basically disconnected, we show that for a countably weakly Lindelof space Χ, its minimal basically disconnected cover ${\bigwedge}$Χ is given by the filter space of fixed ${\sigma}Ζ(Χ)^#$- ultrafilters.

  • PDF

MINIMAL BASICALLY DISCONNECTED COVERS OF PRODUCT SPACES

  • Kim Chang-Il
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.347-353
    • /
    • 2006
  • In this paper, we show that if the minimal basically disconnected cover ${\wedge}X_\imath\;of\;X_\imath$ is given by the space of fixed a $Z(X)^#$-ultrafilters on $X_\imath\;(\imath=1,2)\;and\;{\wedge}X_1\;{\times}\;{\wedge}X_2$ is a basically disconnected space, then ${\wedge}X_1\;{\times}\;{\wedge}X_2$ is the minimal basically disconnected cover of $X_1\;{\times}\;X_2$. Moreover, observing that the product space of a P-space and a countably locally weakly Lindelof basically disconnected space is basically disconnected, we show that if X is a weakly Lindelof almost P-space and Y is a countably locally weakly Lindelof space, then (${\wedge}X\;{\times}\;{\wedge}Y,\;{\wedge}_X\;{\times}\;{\wedge}_Y$) is the minimal basically disconnected cover of $X\;{\times}\;Y$.

MINIMAL CLOZ-COVERS OF NON-COMPACT SPACES

  • Kim, Chang-Il
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권2호
    • /
    • pp.151-159
    • /
    • 1997
  • Observing that for any dense weakly Lindelof subspace of a space Y, X is $Z^{#}$ -embedded in Y, we show that for any weakly Lindelof space X, the minimal Cloz-cover ($E_{cc}$(X), $z_{X}$) of X is given by $E_{cc}$(X) = {(\alpha, \chi$) : $\alpha$ is a G(X)-ultrafilter on X with $\chi\in\cap\alpha$}, $z_{X}$=(($\alpha, \chi$))=$\chi$, $z_{X}$ is $Z^{#}$ -irreducible and $E_{cc}$(X) is a dense subspace of $E_{cc}$($\beta$X).

  • PDF

COCOMPACT F-BASES AND RELATION BETWEEN COVER AND COMPACTIFICATION

  • Lee, Sang-Deok;Kim, Chang-Il
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제3권2호
    • /
    • pp.163-171
    • /
    • 1996
  • Observing that a locally weakly Lindel$\"{o}$f space is a quasi-F space if and only if it has an F-base, we show that every dense weakly Lindel$\"{o}$f subspace of an almost-p-space is C-embedded, every locally weakly Lindel$\"{o}$f space with a cocompact F-base is a locally compact and quasi-F space and that if Y is a dense weakly Lindel$\"{o}$f subspace of X which has a cocompact F-base, then $\beta$Y and X are homeomorphic. We also show that for any a separating nest generated intersection ring F on a space X, there is a separating nest generated intersection ring g on $\phi_{Y}^{-1}$(X) such that QF(w(X, F)) and ($\phi_{Y}^{-1}$(X),g) are homeomorphic and $\phi_{Y}_{x}$(g$^#$)=F$^#$.

  • PDF

BASICALLY DISCONNECTED SPACES AND PROJECTIVE OBJECTS

  • Kim, Chang-Il
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권1호
    • /
    • pp.9-17
    • /
    • 2002
  • In this Paper, we will show that every basically disconnected space is a projective object in the category $Tych_{\sigma}$ of Tychonoff spaces and $_{\sigma}Z^{#}$ -irreducible maps and that if X is a space such that ${\Beta} {\Lambda} X={\Lambda} {\Beta} X$, then X has a projective cover in $Tych_{\sigma}$. Moreover, observing that for any weakly Linde1of space, ${\Lambda} X : {\Lambda} X\;{\longrightarrow}\;X$ is $_{\sigma}Z^{#}$-irreducible, we will show that the projective objects in $wLind_{\sigma}$/ of weakly Lindelof spaces and $_{\sigma}Z^{#}$-irreducible maps are precisely the basically disconnected spaces.

  • PDF

MINIMAL WALLMAN COVERS OF TYCHONOFF SPACES

  • Kim, Chang-Il
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.1009-1018
    • /
    • 1997
  • Observing that for any $\beta_c$-Wallman functor $A$ and any Tychonoff space X, there is a cover $(C_1(A(X), X), c_1)$ of X such that X is $A$-disconnected if and only if $c_1 : C_1(A(X), X) \longrightarrow X$ is a homeomorphism, we show that every Tychonoff space has the minimal $A$-disconnected cover. We also show that if X is weakly Lindelof or locally compact zero-dimensional space, then the minimal G-disconnected (equivalently, cloz)-cover is given by the space $C_1(A(X), X)$ which is a dense subspace of $E_cc(\betaX)$.

  • PDF