Abstract
Observing that for any $\beta_c$-Wallman functor $A$ and any Tychonoff space X, there is a cover $(C_1(A(X), X), c_1)$ of X such that X is $A$-disconnected if and only if $c_1 : C_1(A(X), X) \longrightarrow X$ is a homeomorphism, we show that every Tychonoff space has the minimal $A$-disconnected cover. We also show that if X is weakly Lindelof or locally compact zero-dimensional space, then the minimal G-disconnected (equivalently, cloz)-cover is given by the space $C_1(A(X), X)$ which is a dense subspace of $E_cc(\betaX)$.