• Title/Summary/Keyword: Wave-number

Search Result 1,651, Processing Time 0.03 seconds

A Study on the Impulse Wave Discharged from the Exit of a Right-Angle Pipe Bend (곡관출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Hur, S.C.;Kweon, Y.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.634-639
    • /
    • 2001
  • The current study addresses experimental and computational work of impulse wave discharged from the exit of two kinds of right-angle pipe bends, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.02 to 1.20 is employed to obtain the impulse wave propagating outside the exit of the pipe bends. A Schlieren optical system visualizes the impulse wave discharged from the exit of the pipe bends at an instant. The experimental data of the magnitude of the impulse wave and its propagating directivity are analyzed to characterize the impulse waves discharged from the exit of the pipe bends and compared with those discharged from a straight pipe. Computational results well predict the experimented dynamic behaviors of the impulse wave. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulse wave and its directivity toward to the pipe axis, compared with the straight pipe and right-angle smooth bend. It is believed that the right-angle miter bend pipe can playa role of a passive control against the impulse wave.

  • PDF

Numerical Simulations of an Unsteady Shock Wave Propagating into a Helmholtz Resonator (Helmholtz 공명기 내부를 전파하는 비정상 충격파의 수치해석)

  • Lee, Y.K.;Gweon, Y.H.;Shin, H.D.;Kim, H.D.;AOKI, T.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1643-1648
    • /
    • 2004
  • When a shock wave propagates into a Helmholtz resonator, very complicated wave phenomena are formed both inside and outside the resonator tube. Shock wave reflection, shock focusing phenomena and shock-vortex interactions cause strong pressure fluctuations inside the resonator, consequently leading to powerful sound emission. In the present study, the wave phenomena inside and outside the Helmholtz resonator are, in detail, investigated with a help of CFD. The Mach number of the incident shock wave is varied below 2.0 and several types of resonators are tested to investigate the influence of resonator geometry on the wave phenomena. A TVD scheme is employed to solve the axisymmetric, compressible, Euler equations. The results obtained show that the configuration of the Helmholtz resonator significantly affects the peak pressure of shock wave focusing, its location, the amplitude of the discharged wave and resonance frequency.

  • PDF

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan;Jakka, Ravi S.;Wason, H.R.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.775-791
    • /
    • 2017
  • Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.

Effect of Change of Numerical Parameters on Outflow Characteristics in the Linear Muskingum-Cunge Method (선형 Muskingum-Cunge 법에서의 수치적 인자의 변화가 유출특성에 미치는 영향)

  • 김진수
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.139-150
    • /
    • 1996
  • This paper presents the effect of numerical parameters, such as grid size and grid ratio, on the outflow hydrograph of a unit-width plane in the linear Muskingum-Cunge method. The numerical results depend on Courant number C and cell Reynolds number D, two physically and numerically meaningful parameters. As C approache 1 and D increases, the numerical dispersion-relating oscillations are difficult to occur. The numerical oscillations occur in the front of a propagating wave for C < 1, while smaller oscillations occur behind the wave for C > 1 due to the numerical diffusion effect. For a plane with a small value of characteristic reach length L (e.g., a steep plane), the numerical solution of the Muskingum-Cunge method is similar to that of the kinematic wave method, which shows no wave attenuation. However, for a plane with a large value of L (e.g., a mild plane), the Muskingum-Cunge method leads to the diffusion waves which are essentially independent of the Courant number. Accordingly, the Muskingum-Cunge method will be suited for the routing of the catchment with relatively mild slopes.

  • PDF

Measurements of multimode characteristics including surface wave mode in a dielectrically loaded rectangular cavity (직육면체 캐비티의 다중 모드 특성및 표면파 모드 특성 측정)

  • 김채영;김윤명;라정웅
    • 전기의세계
    • /
    • v.28 no.4
    • /
    • pp.47-52
    • /
    • 1979
  • Total number of resonant modes in a microwave oven cavity may be maximized for a given frequency bandwidth to obtain more uniform power distribution by choosing proper size of the cavity. The total number of modes is calculated for a dielectrically loaded rectangular cavity and its size is suggested here for which the change in the number of modes is less sensitive to the change of dielectric layer thickness and its total number of modes is maximized in a given range of cavity sizes. A prove coupled rectangular cavity is constructed and the total existing modes are measured to see the change of modes depending on the dielectric layer thickness and the cavity size. Surface wave mode existing in the dielectric layer is confirmed by measuring Q and the input impedance of the cavity for this mode, which closely compares with the calculation.

  • PDF

A Study on the Measurement of Ship Wave (항주파 관측에 관한 연구)

  • Jung, Dae-Deug
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.297-301
    • /
    • 2008
  • On-site measurement of ship wave has been carried out in the vicinity of Mokpo inner harbour. The wave data were collected and logged 5Hz by the ultrasonic instrument for 12hour on May 17, 2006. The number of data was 216,000 and the maximum wave height was 81.41cm in normal weather condition. It was found that the wave conditions in this water area are predominantly affected by the ship-generated waved under normal condition. By comparing with the wind-generated waves in the open region which were irregular but with dominant directional characteristics, the existing harbor wave field was much more complex.

  • PDF

The Effect of Partial Closure of the Duct Exit on the Impulsive Wave Impinging upon a Flat Plate (평판에 충돌하는 펄스파에 미치는 관출구 부분폐쇄의 영향)

  • Shin, Hyun-Dong;Lee, Young-Ki;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1595-1600
    • /
    • 2004
  • When a shock wave arrives at a duct, an impulsive wave is discharged from the duct exit and causes serious noise and vibration problems. In the current study, the characteristics of the impulsive wave discharged from a partial closed duct exit is numerically investigated using a CFD method. The Yee-Roe- Davis's total variation diminishing(TVD) scheme is used to solve the axisymmetric, unsteady, compressible Euler equations. With several partial closed duct exits, the Mach number of the incident shock wave $M_s$ and the distance L/D between the duct exit and a flat plate are varied in the range of $M_s$ = 1.01 ${\sim}$ 1.50 and L/D = 1.0 ${\sim}$ 4.0, respectively. The results obtained show that the magnitude of the impulsive wave impinging upon the flat plate strongly depends upon $M_s$, L/D and the partial closure of duct exit. The impulsive wave on the flat plate can be considerably alleviated by the partial closure of duct exit and, thus, the present method can be a passive control for the impulsive wave.

  • PDF

Implementation of Wave Digital Filters Based on Multiprocessor Architecture (멀티프로세서 구조를 이용한 Wave Digital Filter의 구현)

  • Kim, Hyeong-Kyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2303-2307
    • /
    • 2006
  • The round off noise properties of wave digital filters have known and desirable properties in respect to their realization with short coefficient wordlengths. This paper presents the optimal implementation of wave digital filters by employing multiprocessor archtectures in the sense of input sampling rate, the number of processors, and input-output delay. The implementation will be specified by complete circuit diagrams including control signals, and can be applied to an existing silicon complier for VLSI layout generation.

Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • In the present research, wave propagation characteristics of a rotating FG nanobeam undergoing rotation is studied based on nonlocal strain gradient theory. Material properties of nanobeam are assumed to change gradually across the thickness of nanobeam according to Mori-Tanaka distribution model. The governing partial differential equations are derived for the rotating FG nanobeam by applying the Hamilton's principle in the framework of Euler-Bernoulli beam model. An analytical solution is applied to obtain wave frequencies, phase velocities and escape frequencies. It is observed that wave dispersion characteristics of rotating FG nanobeams are extremely influenced by angular velocity, wave number, nonlocal parameter, length scale parameter, temperature change and material graduation.

A P-wave Detection Algorithm by Template Matching Method (템플레이트 매칭에 의한 심전도 신호의 P파 검출 알고리즘에 관한 연구)

  • Hong, Jae-Woo;Jeong, Hee-Kyo;Shin, Kun-Soo;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.21-24
    • /
    • 1990
  • This paper presents a new algorithm for P-wave detection in the ECG signal, we get the peak, onset and offset point by using significant point extraction algorithm with 5-point derivative. To these set of extracted significant points, we apply amplitude and duration threshold criterion. we define the set of significant point meeting the criterion as P-wave candidate. Then P-wave candidate is classified through match-process with template. The template with maximum number or P-wave candidate is selected to be the P-wave.

  • PDF