• Title/Summary/Keyword: Water Exit

Search Result 191, Processing Time 0.027 seconds

Characteristics of spatial distribution of cold cathode type large aperture electron beam (냉음극형 대면적 전자빔의 공간적 분포 특성)

  • Woo, S.H.;Abroyan, M.;Cho, C.H.;Kim, G.H.;Lee, H.S.;Rim, G.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF

The Characteristics for Seepage Behaviour of Soil Structure by Modeling Tests (모형실험에 의한 토공구조물의 침투거동특성)

  • 신방웅;강종범
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.158-167
    • /
    • 1999
  • In parallel flow condition, to estimate the stability of the extended embankment constructed on a permeable foundation ground, a laboratory model test was performed due to extended materials and water level increasing velocity of a flood period. A laboratory model test was peformed for different permeability coefficients ($K_1=2.0{\times}10^{-5}cm/sec,\;K_2=1.5{\times}10^{-4}cm/sec,\;K_3=2.3{\times}10^{-3}cm/sec$) using seepage. The fluctuation of water level occurring to an extended embankment was analyzed by laboratory model tests as vary the increasing velocity of water level with 0.6cm/min, 1.2cm/min, 2.4cm/min respectively. In analysis results, the increase of water level into embankment occurs rapidly because seepage water moving along with a permeable soil flow into embankment. The larger the permeability coefficient of an extended part is the longer initial seepage distance, and the exit point of downstream slope is gradually increased and then shows unstable seepage behavior as occurring partial collapse. As the increasing velocity of water level increase, the initial seepage line is formed low, and the discharge increases. Therefore, the embankment extended by a lower permeable soil than existing embankment shows stable seepage behavior because an existing embankment plays a role as filter for an extended part.

  • PDF

Experimental Study on Spray Performance of Nozzles for Autonomous Fire Fighting Monitor (자율형 소화모니터 노즐의 분사 성능에 대한 실험 연구)

  • Rhyu, SeongSun;Kim, HyoungTae;Seo, JeongHwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.80-88
    • /
    • 2022
  • A systematic experimental study is carried out for the fire fighting monitor nozzle of 65A diameter to design and manufacture a new nozzle with better water spray performance than available domestic nozzles. The nozzle inlet pressure, flow rate and reach for the discharged water from the nozzle are measured by utilizing the experimental facility consisting of two pumps and piping system with a flow meter and pressure gauges. It was found that the baffle position and baffle head chamfering were the most sensitive design factors to be remarkably changed in the flow rate of the discharged water. Also, It was confirmed that the baffle position and the water exit area had the significant effect on the change in reach distance. The results obtained from this study are expected to be used effectively to design new nozzles with excellent spray performances and also to validate numerical analysis results for evaluating the water spray performance of fire fighting monitor nozzles.

An Experimental Study on the Slamming impact around Wedged type structure in accordance with the Weight and Height of the change (중량 및 높이변화에 따른 쐐기형 구조물 주위의 슬래밍 충격에 관한 실험적 연구)

  • Oh, Seung-Jin;Jo, Dae-Hawn
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • Slamming means that the hull hits the waves and receives impact pressure. This slamming effect may cause harm to people and when you put the hull at risk. so it is very harmful for cargo safety. Therefor slamming impact pressure should be fully considered in ship designing. In this study the model of wedged type structure are produced aimed to simulate a free fall that the experiments were carried out on different weight and free fall height. The flow field has been obtained by 2-frame grey level cross correlation PIV(Particle Image Velocimetry) method and experiment was divided into water entry and water exit. The impact pressure of free fall structure by a pressure acquisition system apply to dewetron system. The angles between a model and the water surface are adapted $15^{\circ}$ respectively. The weight change of models was given as 1.5, 1.8 and 2.0kg. To study slamming phenomenon for free fall height the experiments were carried out by the free fall height of 100, 200 and 300mm. The experimental value of the impact pressure according to the changes in weight was increase impact pressure in proportion to the increase in weight and higher free falling height has also influenced the increase in impact pressures.

Performance Analysis of Centrifugal Compressor in Wet Compression (물입자를 분사하는 원심압축기의 성능해석)

  • Kang Jeong-Seek;Cha Bong-Jun;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.237-242
    • /
    • 2005
  • The energy consumed by compressor in gas turbine is equivalent to $30\sim50\%$ of energy produced by turbine and, therefore, research on reducing compression work is important in increasing the efficiency of gas turbine. One of the method to reduce the compression work is to inject small water droplets into the compressor. This method decreases the compression work by decreasing the compressor exit temperature through the evaporation of water. Researches on wet compression, up to now, are focused on thermodynamic analysis of wet compression where the decrease of exit flow temperature and compression work is demonstrated. This paper presents an thermodynamic and aerodynamic analysis of wet compression in centrifugal compressor for microturbine.

  • PDF

CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle (유막 코팅 노즐의 유동특성에 관한 CFD해석)

  • Jung, Se-Hoon;Ahn, Seuig-Ill;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.

Hydraulic Residence Time in a Prototype Free Water Surface Constructed Wetland

  • Lee, Kyung-Do;Kwun, Soon-Kuk;Kim, Seong-Bae;Cho, Young-Hyun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, a tracer test using rhodamine-WT was performed to investigate the flow characteristics and to quantify the observed hydraulic residence time (HRT) for a high-lying cell in the Banwol wetland of the Sihwa constructed wetland. The tracer test indicated that even if flow was mainly observed in the open water area of the Banwol wetland, water flowed continuously in the vegetative area and there was no dead zone. The calculated HRT (51.3 hrs), calculated by dividing the wetland volume by the wetland inflow, exceeded the observed HRT (38.7 hrs), since the short-circuiting of flux resulting from irregular topography and vegetation was not reflected in the calculated HRT. The exit tracer concentration curves were reproduced well by both the plug flow with dispersion and tanks-in-series models, indicating that the performance of the Banwol wetland can be estimated accurately using these models.

Considerations of Permeability of Converter Slag for Recycling in vertical drainage method (연직배수공법에 있어서 제강슬래그의 재활용을 위한 투수성 연구)

  • 이광찬;정규향;김영남;이문수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.93-112
    • /
    • 2000
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. Converter slag being submerged with fresh water, the coefficients of permeability in A and B samples less than 10mm grain sizes were measured as 6.52${\times}$10$\^$-2/cm/sec and 5.99${\times}$10$\^$-1/cm/sec, while changed as 1.88${\times}$10$\^$-2/cm/sec, 3.86${\times}$10$\^$-1/cm/sec under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 180 days on using sea water, the coefficients of permeability of sample A and B samples decreased ten times smaller than those initial values. And after that time continually decreased as for till 360 days. The reduction of permeability coefficient was considered to influence filled with voids in high-calcium quicklime(CaO). However, in-situ coefficient of permeability was practically satisfactory.

  • PDF

Considerations of Permeability of Converter Slag for Recycling in vertical drainage method (연직배수공법에 있어서 제강슬래그의 재활용을 위한 투수성 연구)

  • 이광찬;정규향;김영남;이문수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.12-31
    • /
    • 2000
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. Converter slag being submerged with fresh water, the coefficients of permeability in A and B samples less than 10mm grain sizes were measured as 6.52${\times}$10$\^$-2/cm/sec and 5,99${\times}$10$\^$-1/cm/sec, while changed as 1,88${\times}$10$\^$-2/cm/sec, 3.86${\times}$10$\^$-1/cm/sec under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 180 days on using sea water, the coefficients of permeability of sample A and B samples decreased ten times smaller than those initial values. And after that time continually decreased as for till 360 days. The reduction of permeability coefficient was considered to influence filled with voids in high-calcium quicklime(CaO). However, in-situ coefficient of permeability was practically satisfactory.

  • PDF

A MIXED CORE FOR SUPERCRITICAL WATER-COOLED REACTORS

  • Cheng, Xu;Liu, Xiao-Jing;Yang, Yan-Hua
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.117-126
    • /
    • 2008
  • In this paper, a new reactor core design is proposed on the basis of a mixed core concept consisting of a thermal zone and a fast zone. The geometric structure of the fuel assembly of the thermal zone is similar to that of a conventional thermal supercritical water-cooled reactor(SCWR) core with two fuel pin rows between the moderator channels. In spite of the counter-current flow mode, the co-current flow mode is used to simplify the design of the reactor core and the fuel assembly. The water temperature at the exit of the thermal zone is much lower than the water temperature at the outlet of the pressure vessel. This lower temperature reduces the maximum cladding temperature of the thermal zone. Furthermore, due to the high velocity of the fast zone, a wider lattice can be used in the fuel assembly and the nonuniformity of the local heat transfer can be minimized. This mixed core, which combines the merits of some existing thermal SCWR cores and fast SCWR cores, is proposed for further detailed analysis.