• Title/Summary/Keyword: Water Balance 모형

Search Result 218, Processing Time 0.027 seconds

Application of K-WEAP (Korea-Integrated Water Resources Evaluation and Planning Model) (통합수자원평가계획모형 K-WEAP의 적용성 Application of K-WEAP)

  • Choi, Si-Jung;Lee, Dong-Ryul;Moon, Jang-Won;Kang, Seong-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.625-633
    • /
    • 2010
  • An integrated water resources management is highly required to use efficient water and preserve water quality due to the limits of water resources development and water pollution. K-WEAP was developed, which supports the water resources planning and evaluation within a fully integrated interactive system. In this study, we present three applications of K-WEAP. First, we examined the usefulness of K-WEAP as a water resources planning tool through its application to the National Water Resources Plan. Second, the conjunctive use of surface water and groundwater in the Geum river basin with K-WEAP was evaluated, and its results show how to support to set up a sustainable groundwater management plan. Finally, we confirmed the function of the integrated water quantity and quality management in K-WEAP, which conducted by comparing the simulated results of water quality in both QUAL2E and K-WEAP.

Modeling of the Nutrient Concentration in Irrigated paddy (관개논 영양물질 추정모형의 개발(관개배수 \circled1))

  • 서춘석;임상준;박승우;윤광식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.138-143
    • /
    • 2000
  • CREAMS-PADDY model for simulating daily water and nutrient balance at irrigated paddies was developed, applied to, and validated with field data. The model simulates daily flooding depth and total nitrogen and phosphorus concentrations from meterorological, irrigation, and farming data. Simulated results from the model were in good agreement with field data. Among different scenarios to reduce nutrient losses from paddies, the water management was found to be very effective, and recommended for field applications.

  • PDF

Modelling of Sediment Transportation and Deposition in GIS (GIS를 이용한 토사이송 및 퇴적분포 예측기법 개발)

  • Son, Kwang-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.223-233
    • /
    • 2005
  • In this study, a two-dimensional model for identifying areas of erosion and deposition over a basin was developed based on the mass balance principle in a distributed model. The program consists of three steps: (a) estimation of soil erosion; (b) determination of flow amount and direction; and (c) estimation of mass balance. Soil erosion was estimated with USLE. A single-direction (SF) and a multi-direction flow algorithm (MF) were applied to estimate slope length (L). The Maximum Downhill Slope Method (MDS) and the Neighborhood Method (NBH) were used to estimate the slope degree (S). Sediment transport resulting from eroded soil was estimated using Ferro's (1998) and Swift's (2000) sediment delivery ratio (DR). The model was validated by comparing the predicted sediment yields for three basins with measured data. The developed algorithm showed that Ferro's DR method combined with the MDS and MF produced the best agreement with the dredging records of three agricultural reservoir basins in Korea.

Estimation of Groundwater Recharge by the Water Balance Analysis using DAWAST Model (일 유출모형의 물수지 분석에 의한 지하수 함양량 추정)

  • Lee, Duk-Joo;Lee, Ho-Chun;Lee, Soon-Kwang;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.431-434
    • /
    • 2003
  • This research developed a method for the estimation of groundwater recharge by yielding daily soil moisture content and watershed evapotranspiration from the water balance concept of the unsaturated and saturated layers in rainfall-runoff model called DAWAST. The goal of the research is to estimate the groundwater recharge fulfilling conditions of the safe discharge for any season. To meet this goal, the data of groundwater level and stream flow rate have been monitored in a study area and used to validate the model.

  • PDF

Korean Soil Characteristics Database for SWAT-K Model (SWAT-K 모형의 국내 토양특성 정보 구축)

  • Lee, Jeong Eun;Kim, Chul-Gyum;Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.495-501
    • /
    • 2024
  • SWAT-K (Soil and Water Assessment Tool-Korea) model is a long-term runoff model using a soil-centered water balance equation. Soil is crucial for simulating hydrological components, requiring a database (usersoil.dbf) with soil series attribute information. Since the soil property information estimated by soil transfer functions developed overseas does not reflect the characteristics of domestic soil, the Korea Institute of Civil Engineering and Building Technology has established the soil database, which incorporates the results of domestic soil surveys and research from the National Institute of Agricultural Sciences. This study provides a more detailed description of the hydrological component simulation process using soil property information and revises and supplements the previously established soil database to operate in the latest SWAT model. Additionally, by providing this database through the integrated water management platform, it is expected to be utilized not only in the SWAT-K model but also in various watershed hydrological models developed considering soil characteristics.

Applicability of stochastic flocculation model and its capability when incorporated into sediment transport model (추계학적 응집모형의 적용성 및 유사이동 모형과의 결합가능성)

  • Son, Minwoo;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.368-368
    • /
    • 2016
  • 점착성 유사는 응집현상을 통해 크기와 밀도를 바꾸고 이에 따라 부유 및 이동에 큰 영향을 미치는 침강속도가 지속적으로 변화한다. 따라서 점착성 유사의 거동을 이해하기 위해서는 응집현상에 대한 고려가 필수적으로 이루어져야 한다. 현재까지 이루어진 응집현상 모형은 크게 Population balance equation type 모형(PBE)과 Floc growth type 모형(FGM)으로 나뉜다. PBE 모형은 점착성 유사의 입도분포를 모의할 수 있는 장점이 있는 반면에 닫힌 계에서 질량보존을 만족시키지 못하는 단점을 가진다. FGM 모형은 간단한 식을 통해 질량보존을 만족시키고 수치적으로 효율적인 모의를 할 수 있는 반면 입도분포를 모의할 수 없는 단점을 가진다. 이러한 장단점으로 인해 PBE 모형은 유사이동모형과 결합되어 이용된 사례가 없으며 FGM 모형은 유사이동모형과 결합되어 평균적인 점착성 유사의 거동만을 모의하는 연구에 이용되었다. 본 연구에서는 Stochastic floc growth type 모형(SFGM)의 개발에 따라 이해할 수 있는 점착성 유사이동의 특성과 이를 유사이동 모형과 결합시키는 방향에 대해 검토한다. 현재까지 진행된 연구 결과를 분석하면 SFGM은 질량보존을 만족시키면서도 점착성 유사의 입도분포를 모의할 수 있는 장점을 가지는 것으로 판단된다. 특히 난수발생의 단계에서 적절한 확률분포형을 선정하고 확률매개변수의 보정이 이루어지는 경우에는 높은 정확도를 가지는 입도분포 모의가 가능하다. 가는 모래를 대상으로 하는 비점착성 유사의 경우에는 추계학적인 유사이동 모형의 개발이 활발히 이루어져 왔다. 개발된 모형은 실제 측정값에 적용되어 다양한 학술적 가능성을 보여왔다. 따라서 SFGM의 개발이 점착성 유사의 이동모형과 결합되는 경우에는 점착성 유사가 지배적인 다양한 환경에서의 거동 특성을 이해할 때 매우 유용할 것으로 판단된다. 응집모형은 난류의 강도에 지배적인 영향을 받으며 유사의 입경 및 밀도 변화를 계산한다는 점을 고려할 때 유사이동 모형 역시 난류 강도에 대한 정보를 계산할 수 있는 지배방정식을 필요로 한다. 향후 개발될 추계학적 점착성 유사의 이동모형은 난류에 대한 정보, SFGM의 결합 등을 필요조건으로 가진다.

  • PDF

Soil Salt Prediction Modeling for the Estimation of Irrigation Water Requirements for Dry Field Crops in Reclaimed Tidelands (간척지 밭작물의 관개용수량 추정을 위한 토양염분예측모형 개발)

  • 손재권;구자웅;최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.96-110
    • /
    • 1994
  • The purpose of this study is to develop soil salt prediction model for the estimation of irrigation water requirements for dry field crops in reclaimed tidelands. The simulation model based on water balance equation, salt balance equation, and salt storage equation was developed for daily prediction of sa]t concentration in root zone. The data obtained from field measurement during the growing period of tomato were used to evaluate the applicability of this model. The results of this study are summarized as follows: 1.The optimum irrigation point which maximizes the crop yield in reclaimed tidelands of silt loam soil while maintaining the salt concentration within the tolerance level, ws found to be pF 1.6, and total irrigation requirement after transplanting was 602mm(6.7 mm/day)for tomato. 2.When the irrigation point was pF 1.6, the deviation between predicted and measured salt concentration was less than 4 % at the significance level of 1 7% 3.Since the deviations between predicted and measured values data decrease as the amount of irrigation water increases, the proposed model appear to be more suitable for use in reclaimed tidelands. 4.The amount of irrigation water estimated by the simulation model was 7.2mm/day in the average for cultivating tomato at the optimum irrigation point of pF 1.6.The simulation model proposed in this study can be generalized by applying it to other crops. This, model, also, could be further improved and extended to estimate desalinization effects in reclaimed tidelands by including meteorological effect, capillary phenomenon, and infiltration.

  • PDF

A Simulation of the Runoff and the NPS Pollutants Discharge using SWMM Model (SWMM 모형을 이용한 도시 유역의 유출 및 NPS 오염물 배출 모의)

  • 신현석;윤용남
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.125-135
    • /
    • 1993
  • This study was conducted for two purposes. The first was the selection of the proper model for the urban runoff, and NPS(non-point source) loads and the second was the adjustment of the selected model through the calibration and the verification of the observed data on an urban drainage basin. The selected model for this study was the Storm Water Management Model(SWMM) developed and maintained by the US Environmental Protection Agency(EPA). In particular, the Runoff Block for the surface discharge and the Transport Block for the flow routing was used. The study basin is Youngdu basin, which is a typical developed urban drainage basin. The four rainfall events for the runoff and the two for the four NPS pollutants(SS, BOD, COD and TN) were used for the calibration and the estimation of the model parameters. This study performed the calibration with regard to the peak discharge, the time to peak discharge, the volume and the relative error for three items. It was shown that SWMM can successfully be used for the prediction of the runoff and the NPS pollutants discharge. The result of this study can be used as the basis for the analysis of the correlation between the runoff and the NPS pollutants discharges, and the analysis of the mass balance with the monthly and annual NPS loads in an urban drainage basin.

  • PDF

Development of 1D finite volume model for discontinues flow simulation (K-River) (불연속 흐름 모의를 위한 1차원 유한체적 모형 K-River의 개발)

  • Jeong, Anchul;An, Hyunuk;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.895-903
    • /
    • 2018
  • There are a large number of weirs installed in rivers of Korea, and these characteristics are not common in other countries. When the flow passes through a structure such as a weir, discontinuous flow occurs. In terms of numerical simulation, it affects the numerical instability due to the balance between the flow term and the source term. In order to solve these problems, many researchers used empirical formulas or numerical scheme simplification. Recently, researches have been conducted to use more accurate numerical scheme. K-River was developed to reflect the characteristics of domestic rivers and calculate the discontinuous flow more accurately. For the verification of K-River, 1) numerical experiment simulations with a bump in the bed, 2) laboratory experiment of hydraulic jump simulation, 3) real river were performed. K-River verified its applicability by simulating results similar to the exact solution and observed value in all simulations.

An Analysis of the water balance of Low Impact Development Techniques According to the Rainfall Types (강우 유형에 따른 저영향개발 기법별 물수지 분석)

  • Yoo, Sohyun;Lee, Dongkun;Kim, Hyomin;Cho, Youngchul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • Urbanization caused various environmental problems like destruction of natural water cycle and increased urban flood. To solve these problems, LID(Low Impact Development) deserves attention. The main objective of LID is to restore the water circulation to the state before the development. In the previous studies about the LID, the runoff reduction effect is mainly discussed and the effects of each techniques of LID depending on rainfall types have not fully investigated. The objective of this research is to evaluate the effect of LID using the quantitative simulation of rainwater runoff as well as an amount of infiltration according to the rainfall and LID techniques. To evaluate the water circulation of LID on the development area, new land development areas of Hanam in South Korea is decided as the study site. In this research, hydrological model named STORM is used for the simulation of water balance associated with LID. Rainfall types are separated into two categories based on the rainfall intensity. And simulated LID techniques are green roof, permeable pavement and swale. Results of this research indicate that LID is effective on improvement of water balance in case of the low intensity rainfall event rather than the extreme event. The most effective LID technique is permeable pavement in case of the low intensity rainfall event and swale is effective in case of the high intensity rainfall event. The results of this study could be used as a reference when the spatial plan is made considering the water circulation.