Acknowledgement
Research for this paper was carried out under the KICT Research Program (project no. 20240166-001, Development of IWRM-Korea Technical Convergence Platform Based on Digital New Deal) funded by the Ministry of Science and ICT.
References
- Allen, R. G., Jensen, M. E., Wright, J. L. and Burman, R. D. (1989). "Operational estimates of reference evapotranspiration." Agronomy Journal, Vol. 81, No. 4, pp. 650-662, https://doi.org/10.2134/agronj1989.00021962008100040019x.
- Arnold, J. G., Allen, P. M. and Bernhardt, G. (1993). "A comprehensive surface-groundwater flow model." Journal of Hydrology, Vol. 142, pp. 47-69, https://doi.org/10.1016/0022-1694(93)90004-S.
- Arnold, J. G., Williams, J. R. and Maidment, D. R. (1995). "Continuous-time water and sediment-routing model for large basin." Journal of Hydraulic Engineering, Vol. 121, No. 2, pp. 171-183, https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(171).
- FAO/IIASA/ISRIC/ISS-CAS/JRC (2012). Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
- FAO-UNESCO (2003). The Digital Soil Map of the World, Version 3.6, Land and Water Development Division, Rome, Italy.
- Han, D. Y., Lee, J. W., Kim, W. J., Bae, S. C. and Kim, S. J. (2021). "Hydrologic evaluation of SWAT considered forest type using MODIS LAI data: a case of Yongdam Dam watershed." Journal of Korea Water Resources Association, Vol. 54, No. 11, pp. 875-889, https://doi.org/10.3741/JKWRA.2021.54.11.875.
- Korean Soil Information System (2024). Soil Series, Available at: https://soil.rda.go.kr (Accessed: July 7, 2024).
- Jang, W. S., Yoo, D. S., Chung, I. M., Kim, N. W., Jun, M. S., Park, Y. S., Kim, J. G. and Lim, K. J. (2009). "Development of SWAT SD-HRU pre-processor module for accurate estimation of slope and slope length of each HRU considering spatial topographic characteristics in SWAT." Journal of Korean Society on Water Quality, Vol. 25, No. 3, pp. 351-362.
- Kim, C. G., Cho, J. P., Lee, J. E. and Chang, S. W. (2023). "Future hydrological changes in Jeju Island based on CMIP6 climate change scenarios." Journal of Korea Water Resources Association, Vol. 56, No. 11, pp. 737-749, https://doi.org/10.3741/JKWRA.2023.56.11.737.
- Kim, N. W., Chung, I. M., Kim, C. G., Lee, J. and Lee, J. E. (2009). Development and applications of SWAT-K (Korea), In: Arnold, J. et al. (Eds.), Soil and Water Assessment Tool (SWAT) Global Applications, Special Publication No. 4, World Association of Soil and Water Conservation, Bangkok, Thailand, 397 p.
- Kim, N. W., Lee, B. J., Lee, J. E., Chung, I. M., Kim, C. G., Lee, J. and Ha, S. K. (2007). "Relationship between surface water hydrological analysis and soil characteristics." In: National Institute of Agricultural Science and Technology (Eds.), Utilization of soil hydraulic characteristics and soil digital maps for hydrological analysis, 143 p.
- Lee, J. E., Lee, J. W., Kim, C. G. and Chung, I. M. (2023). "Effect of dam operation on the spatial variability of downstream flow." Journal of Engineering Geology, Vol. 33, No. 4, pp. 627-638, https://doi.org/10.9720/kseg.2023.4.627.
- Lopez-Ballesteros, A., Nielsen, A., Castellanos-Osorio, G., Trolle, D. and Senent-Aparicio, J. (2023). "DSOLMap, a novel high-resolution global digital soil property map for the SWAT+ model: Development and hydrological evaluation." Catena, Vol. 231, 107339, https://doi.org/10.1016/j.catena.2023.107339.
- Ministry of Science and Technology (MST) (2011). Development of analysing system for surface water hydrological components.
- National Institute of Agriculture Sciences (NAS) (2017). Classification of hydological soil group of Korean soils.
- Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009, Technical Report No. 406, Texas Water Resources Institute, 618 p.
- Saxton, K. E., Rawls, W., Romberger, J. S. and Papendick, R. I. (1986). "Estimating generalized soil-water characteristics from texture." Soil Science Society of America Journal, Vol. 50, No. 4, pp. 1031-1036, https://doi.org/10.2136/sssaj1986.03615995005000040039x.
- Sloan, P. G. and Moore, I. D. (1984). "Modeling subsurface stormflow on steeply sloping forested watersheds." Water Resources Reserch, Vol. 20, No. 12, pp. 1815-1822, https://doi.org/10.1029/WR020i012p01815.
- Sloan, P. G., Morre, I. D., Coltharp, G. B. and Eigel. J. D. (1983). "Modeling surface and subsurface stormflow on steeply-sloping forested watersheds." Water Resources Inst. Report 142, Univ. Kentucky, Lexington, https://doi.org/10.13023/kwrri.rr.142.
- Williams, J. R. (1995). Chapter 25: The EPIC model, pp. 909-1000. In: Singh, V. P. (ed.). Computer models of watershed hydrology. Water Resources Publications.
- Woo, S. Y., Lee, J. W., Kim, Y. W. and Kim, S. J. (2020) "Assessment of future stream flow and water quality of Man-gyeong river watershed based on extreme climate change scenarios and inter-basin water transfer change using SWAT." Journal of Korea Water Resources Association, Vol. 53, No. 8, pp. 605-616, https://doi.org/10.3741/JKWRA.2020.53.8.605.
- Ye, X., Zhang, Q. and Viney, N. R. (2011). "The effect of soil data resolution on hydrological processes modelling in a large humid watershed." Hydrological Processes, Vol. 25, No. 1, pp. 130-140, https://doi.org/10.1002/hyp.7823.