DOI QR코드

DOI QR Code

Korean Soil Characteristics Database for SWAT-K Model

SWAT-K 모형의 국내 토양특성 정보 구축

  • 이정은 (한국건설기술연구원 수자원하천연구본부) ;
  • 김철겸 (한국건설기술연구원 수자원하천연구본부) ;
  • 이정우 (한국건설기술연구원 수자원하천연구본부) ;
  • 정일문 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2024.07.08
  • Accepted : 2024.07.19
  • Published : 2024.08.01

Abstract

SWAT-K (Soil and Water Assessment Tool-Korea) model is a long-term runoff model using a soil-centered water balance equation. Soil is crucial for simulating hydrological components, requiring a database (usersoil.dbf) with soil series attribute information. Since the soil property information estimated by soil transfer functions developed overseas does not reflect the characteristics of domestic soil, the Korea Institute of Civil Engineering and Building Technology has established the soil database, which incorporates the results of domestic soil surveys and research from the National Institute of Agricultural Sciences. This study provides a more detailed description of the hydrological component simulation process using soil property information and revises and supplements the previously established soil database to operate in the latest SWAT model. Additionally, by providing this database through the integrated water management platform, it is expected to be utilized not only in the SWAT-K model but also in various watershed hydrological models developed considering soil characteristics.

SWAT-K(Soil and Water Assessment Tool-Korea) 모형은 토양 중심의 물수지 방정식을 기본으로 하는 장기유출모형이다. 모형의 필수 입력자료로 공간적인 정보를 나타내는 수치주제도인 토양도를 적용할 경우, 토양통(Soil series)으로 분류된 각 토양의 속성정보에 대한 데이터베이스(usersoil.dbf)의 구축을 필요로 한다. 국외에서 개발된 토양전이함수에 의해 추정된 토양 속성정보는 국내 토양특성을 반영하지 못하기 때문에 한국건설기술연구원에서는 국립농업과학원의 국내 토양 조사결과 및 연구결과를 반영한 토양DB를 구축한 바 있다. 본 연구에서는 토양 속성정보의 수문성분 모의과정을 보다 상세히 기술하고, 기구축된 토양DB를 최신 SWAT 모형에서 구동되도록 수정·보완하였다. 또한, 통합물관리 플랫폼을 통하여 구축된 토양DB를 제공함으로써, SWAT-K 모형 뿐만 아니라 토양을 고려하여 개발된 다양한 유역수문모형에 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Research for this paper was carried out under the KICT Research Program (project no. 20240166-001, Development of IWRM-Korea Technical Convergence Platform Based on Digital New Deal) funded by the Ministry of Science and ICT.

References

  1. Allen, R. G., Jensen, M. E., Wright, J. L. and Burman, R. D. (1989). "Operational estimates of reference evapotranspiration." Agronomy Journal, Vol. 81, No. 4, pp. 650-662, https://doi.org/10.2134/agronj1989.00021962008100040019x. 
  2. Arnold, J. G., Allen, P. M. and Bernhardt, G. (1993). "A comprehensive surface-groundwater flow model." Journal of Hydrology, Vol. 142, pp. 47-69, https://doi.org/10.1016/0022-1694(93)90004-S. 
  3. Arnold, J. G., Williams, J. R. and Maidment, D. R. (1995). "Continuous-time water and sediment-routing model for large basin." Journal of Hydraulic Engineering, Vol. 121, No. 2, pp. 171-183, https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(171). 
  4. FAO/IIASA/ISRIC/ISS-CAS/JRC (2012). Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
  5. FAO-UNESCO (2003). The Digital Soil Map of the World, Version 3.6, Land and Water Development Division, Rome, Italy.
  6. Han, D. Y., Lee, J. W., Kim, W. J., Bae, S. C. and Kim, S. J. (2021). "Hydrologic evaluation of SWAT considered forest type using MODIS LAI data: a case of Yongdam Dam watershed." Journal of Korea Water Resources Association, Vol. 54, No. 11, pp. 875-889, https://doi.org/10.3741/JKWRA.2021.54.11.875. 
  7. Korean Soil Information System (2024). Soil Series, Available at: https://soil.rda.go.kr (Accessed: July 7, 2024). 
  8. Jang, W. S., Yoo, D. S., Chung, I. M., Kim, N. W., Jun, M. S., Park, Y. S., Kim, J. G. and Lim, K. J. (2009). "Development of SWAT SD-HRU pre-processor module for accurate estimation of slope and slope length of each HRU considering spatial topographic characteristics in SWAT." Journal of Korean Society on Water Quality, Vol. 25, No. 3, pp. 351-362. 
  9. Kim, C. G., Cho, J. P., Lee, J. E. and Chang, S. W. (2023). "Future hydrological changes in Jeju Island based on CMIP6 climate change scenarios." Journal of Korea Water Resources Association, Vol. 56, No. 11, pp. 737-749, https://doi.org/10.3741/JKWRA.2023.56.11.737. 
  10. Kim, N. W., Chung, I. M., Kim, C. G., Lee, J. and Lee, J. E. (2009). Development and applications of SWAT-K (Korea), In: Arnold, J. et al. (Eds.), Soil and Water Assessment Tool (SWAT) Global Applications, Special Publication No. 4, World Association of Soil and Water Conservation, Bangkok, Thailand, 397 p. 
  11. Kim, N. W., Lee, B. J., Lee, J. E., Chung, I. M., Kim, C. G., Lee, J. and Ha, S. K. (2007). "Relationship between surface water hydrological analysis and soil characteristics." In: National Institute of Agricultural Science and Technology (Eds.), Utilization of soil hydraulic characteristics and soil digital maps for hydrological analysis, 143 p. 
  12. Lee, J. E., Lee, J. W., Kim, C. G. and Chung, I. M. (2023). "Effect of dam operation on the spatial variability of downstream flow." Journal of Engineering Geology, Vol. 33, No. 4, pp. 627-638, https://doi.org/10.9720/kseg.2023.4.627. 
  13. Lopez-Ballesteros, A., Nielsen, A., Castellanos-Osorio, G., Trolle, D. and Senent-Aparicio, J. (2023). "DSOLMap, a novel high-resolution global digital soil property map for the SWAT+ model: Development and hydrological evaluation." Catena, Vol. 231, 107339, https://doi.org/10.1016/j.catena.2023.107339. 
  14. Ministry of Science and Technology (MST) (2011). Development of analysing system for surface water hydrological components. 
  15. National Institute of Agriculture Sciences (NAS) (2017). Classification of hydological soil group of Korean soils. 
  16. Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009, Technical Report No. 406, Texas Water Resources Institute, 618 p. 
  17. Saxton, K. E., Rawls, W., Romberger, J. S. and Papendick, R. I. (1986). "Estimating generalized soil-water characteristics from texture." Soil Science Society of America Journal, Vol. 50, No. 4, pp. 1031-1036, https://doi.org/10.2136/sssaj1986.03615995005000040039x. 
  18. Sloan, P. G. and Moore, I. D. (1984). "Modeling subsurface stormflow on steeply sloping forested watersheds." Water Resources Reserch, Vol. 20, No. 12, pp. 1815-1822, https://doi.org/10.1029/WR020i012p01815. 
  19. Sloan, P. G., Morre, I. D., Coltharp, G. B. and Eigel. J. D. (1983). "Modeling surface and subsurface stormflow on steeply-sloping forested watersheds." Water Resources Inst. Report 142, Univ. Kentucky, Lexington, https://doi.org/10.13023/kwrri.rr.142. 
  20. Williams, J. R. (1995). Chapter 25: The EPIC model, pp. 909-1000. In: Singh, V. P. (ed.). Computer models of watershed hydrology. Water Resources Publications. 
  21. Woo, S. Y., Lee, J. W., Kim, Y. W. and Kim, S. J. (2020) "Assessment of future stream flow and water quality of Man-gyeong river watershed based on extreme climate change scenarios and inter-basin water transfer change using SWAT." Journal of Korea Water Resources Association, Vol. 53, No. 8, pp. 605-616, https://doi.org/10.3741/JKWRA.2020.53.8.605. 
  22. Ye, X., Zhang, Q. and Viney, N. R. (2011). "The effect of soil data resolution on hydrological processes modelling in a large humid watershed." Hydrological Processes, Vol. 25, No. 1, pp. 130-140, https://doi.org/10.1002/hyp.7823.