• Title/Summary/Keyword: Waste Facilities

Search Result 754, Processing Time 0.027 seconds

Development for Improvement Methodology of Radiation Shielding Evaluation Efficiency about PWR SNF Interim Storage Facility (PWR 사용후핵연료 중간저장시설의 몬테칼로 차폐해석 방법에 대한 계산효율성 개선방안 연구)

  • Kim, Taeman;Seo, Myungwhan;Cho, Chunhyung;Cha, Gilyong;Kim, Soonyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.92-100
    • /
    • 2015
  • For the purpose of improving the efficiency of the radiation impact assessment of dry interim storage facilities for the spent nuclear fuel of pressurized water reactors (PWRs), radiation impact assessment was performed after the application of sensitivity assessment according to the radiation source term designation method, development of a 2-step calculation technique, and cooling time credit. The present study successively designated radiation source terms in accordance with the cask arrangement order in the shielding building, assessed sensitivity, which affects direct dose, and confirmed that the radiation dosage of the external walls of the shielding building was dominantly affected by the two columns closest to the internal walls. In addition, in the case in which shielding buildings were introduced into storage facilities, the present study established and assessed the 2-step calculation technique, which can reduce the immense computational analysis time. Consequently, results similar to those from existing calculations were derived in approximately half the analysis time. Finally, when radiation source terms were established by adding the storage period of the storage casks successively stored in the storage facilities and the cooling period of the spent nuclear fuel, the radiation dose of the external walls of the buildings was confirmed to be approximately 40% lower than the calculated values; the cooling period was established as being identical. The present study was conducted to improve the efficiency of the Monte Carlo shielding analysis method for radiation impact assessment of interim storage facilities. If reliability is improved through the assessment of more diverse cases, the results of the present study can be used for the design of storage facilities and the establishment of site boundary standards.

Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea (수계의 비점오염원 관리 - 대청호를 중심으로)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

Manufacture of non-sintered cement solidifier using clay, waste soil and blast furnace slag as solidifying agents: Mineralogical investigation (점토, 폐토양 및 고로슬래그를 고화재로 이용한 비소성 시멘트 고화체 제조: 광물학적 고찰)

  • Jeon, Ji-Hun;Lee, Jong-Hwan;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.25-39
    • /
    • 2022
  • This study was conducted to evaluate the manufacturing process of non-sintered cement for the safe containment of radioactive waste using low level or ultra-low level radioactive waste soil generated from nuclear-decommissioning facilities, clay minerals, and blast furnace slag (BFS) as an industrial by-product recycling and to characterize the products using mineralogical and morphological analyses. A stepwise approach was used: (1) measuring properties of source materials (reactants), such as waste soil, clay minerals, and BFS, (2) manufacturing the non-sintered cement for the containment of radioactive waste using source materials and deducing the optimal mixing ratio of solidifying and adjusting agents, and (3) conducting mineralogical and morphological analyses of products from the hydration reactions of manufactured non-sintered cement solidifier (NSCS) containing waste concrete generated from nuclear-decommissioning facilities. The analytical results of NSCS using waste soil and clay minerals confirmed none of the hydration products, but calcium silicate (CSH) and ettringite were examined as hydration products in the case of using BFS. The compressive strength of NSCS manufactured with the optimum mixing ratio and using waste soil and clay minerals was 3 MPa after the 28-day curing period, and it was not satisfied with the acceptance criteria (3.44 MPa) for being brought in disposal sites. However, the compressive strength of NSCS using BFS was estimated to be satisfied with the acceptance criteria, despite manufacturing conditions, and it was maximized to 27 MPa at the optimal mixing ratio. The results indicate that the most relevant NSCS for the safe containment of radioactive waste can be manufactured using BFS as solidifying agent and using waste soil and clay minerals as adsorbents for radioactive nuclides.

A Study on an Improvement for Management System of Municipal Sewage Sludge through an investigation of MSS Treatment Facilities (하수오니 처리시설 현황분석을 통한 처리체계 개선 방안 연구)

  • Kim, Young-Koo;Phae, Chae-Gun;Ryu, Don-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • In this study, the existing MSS facilities were investigated for examination the the present condition of MSS treatment system. There are 23 MSS treatment facilities across the country, In total facilities, 6 facilities have economical problems, and 2 facilities were stopped the operation of establishments for technical problems, and most facilities are suffering from environmental problems, for example, odor and waste water. These kinds of problems play a role as obstacle to treat MSS efficiently. Accordingly, to reform current MSS treatment system, a few adequate measures are required. First a Guide line, which is a manual for establishment of MSS treatment facilities efficiently and environmentally friendly, must be offered from the agencies concerned of the Ministry of Environment to local governments. Second, to devise a plan for MSS treatment, Ministry of Environment and all local governments should devise a long-range policy synthetically not fragmentarily and temporarily.

  • PDF

A Study on the Problems and Improvement of the Safety Management Law of Nuclear Facilities -Focused on Safety Management of Aquatic Products- (원자력시설 안전관리 법제의 문제점과 개선방안 연구 -수산물의 안전관리를 중심으로-)

  • Lee, Woo-Do
    • The Journal of Fisheries Business Administration
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2019
  • The main purpose of this study is to analyze and examine the problems of the law systems of the safety and maintenance of nuclear facilities and to propose the improvements with respect to the related problems especialy focused on safety management of aquatic products. Therefore, the results of the paper would be helpful to build an effective management law system of safety and maintenance of nuclear facilities and fisheries products. The research methods are longitudinal and horizontal studies. This study compares domestic policies with foreign policies of nuclear plants and aquatic products. Using the above methods, examining the current system of nuclear-related laws and regulations, we have found that there exist 13 Acts including "Nuclear Safety Act", etc. Safety laws related on nuclear facilities have seven Acts including "Nuclear Safety Act", "the Act on Physical Protection and Radiological Emergency", "Radioactive waste control Act", "Act on Protective Action Guidelines against Radiation in the Natural Environment", "Special Act on Assistance to the locations of facilities for disposal low and intermediate level radioactive waste", "Korea Institute of Nuclear Safety Act". "Act on Establishment and Operation of the Nuclear Safety and Security Commission". The seven laws are composed of 119 legislations. They have 112 lower statute of eight Presidential Decrees, six Primeministrial Decrees and Ministrial Decrees, 92 administrative rules (orders), 6 legislations of local self-government aself-governing body. The concluded proposals of this paper are as follows. Firstly, we propose that the relationship between the special law and general law should be re-established. Secondly, the terms with respect to law system of safety and maintenance of nuclear plants should be redefined and specified. Thirdly, it is advisable to re-examine and re-establish the Law System for Safety and Maintenance of Nuclear Facilities. and environmental rights like the French Nuclear Safety Legislation. Lastly, inadequate legislation on the aquatic pollution damage should be re-established. It is necessary to ensure sufficient transparency as well as environmental considerations in the policy decisions of the Korean government and legislation of the National Assembly. It is necessary to further study the possibilities of accepting the implications of the French legal system as a legal system in Korea. In conclusion, the safety management of nuclear facilities is not only focused on the secondary industry and the tertiary industry centering on power generation and supply, but also on the primary industry, which is the food of the people. It is necessary to prevent damage to be foreseen. Therefore, it is judged that there should be no harm to the people caused by contaminated marine products even if the "Food Safety Law for Prevention of Radiation Pollution Damage" is enacted.

Anaerobic co-digestion of food waste leachate with microalgae for improvement of methane production (메탄생산 향상을 위한 음폐수와 미세조류의 혐기성 통합소화)

  • Lee, Kwanyong;Chantrasakdakul, Phrompol;Kim, Daegi;Park, Jongjin;Choi, Jang-Seung;Park, Ki Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • Food waste leachate (FWL) is a serious pollutant waste coming from the food waste recycling facilities in Korea. FWL has a high organic matter content and high COD to nitrogen (COD/N) ratio, which can disturb efficient methane production in the anaerobic digestion of FWL. In the present study a microalga, Clorella vulgaris (C.V), was used as co-substrate for the FWL anaerobic digestion in order to supply nutrients, decrease the COD/N ratio and increase its methane yield. Different co-digestion mixtures (COD/N ratios) were studied by using biochemical methane potential test and modified Gompertz equation for kinetic study. Mixed substrate of FWL and C. vulgaris in the co-digestion clearly showed more the biomethane yield than the sole substrates. The maximum methane production, 827.7 mL-$CH_4$/g-VS added, was obtained for COD/N ratio of 24/1, whereas the highest improvement of methane yield was found for COD/N ratio of 15/1.

Survey and Economic Analysis of Food Industry Residues for Biomass-to-energy Conversion in Merced and Stanislaus Counties, California, USA (바이오에너지로의 전환을 위한 캘리포니아 식품가공공장 오.폐수 특성 조사 및 경제성 분석)

  • Kim, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.243-253
    • /
    • 2009
  • This research expands investigations into the biomass resource potential associated with California's food processing industry by surveying industries within a two county region in the San Joaquin Valley, California, USA. A previous survey conducted in 2005 for the Sacramento Municipal Utility District (SMUD) quantified residue and waste generation from food processors and food preparation businesses in the Sacramento region. The present survey investigates residue and waste streams from food processors located in Merced and Stanislaus Counties. Sixty food processors were identified to participate in the survey, of which 49 responded (82%) and data were acquired for 38 (63%) (6 facilities closed or moved, 8 decided not to participate). Within the two counties, total annual waste among survey respondents amounted to 24,044 dry tons of high moisture (${\geq}$60%) food residuals, 5,358 dry tons of low moisture (<60%) food residuals; and 23.7 million $m^3$ of wastewater containing 38,814 tons of biochemical oxygen demand ($BOD_5$). The total potential electric power generation from these food residues was estimated at approximately $7\;MW_e$. Total solid waste resource included in the survey response was estimated at about 10% of statewide residue generation for processors falling within the Standard Industrial Classification (SIC) System Major Group 20 (Food and Kindred Products) categories.

A Solid-Phase Extraction Method for Analyzing Trace Amounts of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Waste Water

  • Park, Deok-Hie;Youn, Yeu-Young;Choi, Jae-Won;Lim, Young-Hee;Cho, Hye-Sung
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.12-15
    • /
    • 2011
  • The Korean government has regulated emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in waste water of manufacturing facilities producing chlorinated compounds since 2009. As this regulation is expected to be reinforced in 2013 to 50 pg I-TEQ/L, a large sample volume is required for the analysis of trace amounts of PCDD/Fs in waste water. Liquid-liquid extraction (LLE) is used to extract PCDD/Fs from aqueous samples; however, its low efficiency makes it inadequate for analyzing large sample volumes. Herein, we present a disk-type solid-phase extraction (SPE) method for the analysis of dioxin at a part per quadrillion level in waste water. This SPE system contains airtight glass covers with a decompression pump, which enables continuous semi-automated extraction. Small (0.5 L) and large (7 L) samples were extracted using LLE and SPE methods, respectively. The method detection limits (MDLs) were 0.001.0.25 and 0.015.4.1 pg I-TEQ/L for the SPE and LLE methods, respectively. The concentrations of detected congeners with both methods were similar. However, the concentrations of several congeners that were not detected with the LLE method were quantified using the SPE method.

A Study on Odor Dispersion Prediction of Waste Treatment Facilities Using CFD (CFD를 이용한 쓰레기 처리시설의 악취확산 예측에 관한 연구)

  • Kyung, Seo-Kyung;Kim, Kong-Sook;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.342-349
    • /
    • 2009
  • The purpose of this study is to estimate efficiently an odor dispersion from waste treatment facility for a crematory and a neighborhood facility, then propose planning, a location of an opening or the arrangement of the trees. Hence, offer a comfortable environment for a resident. For this, first the research data about estimating odor dispersion from waste treatment facility and odor are analyzed, then research an ingredient, characteristic, a direct effect for human and a method of measurement. Second, with on-site survey, check odorimetry and the source of odor dispersion, then apply this to the boundary condition of CFD simulation. Third, analyse by the hour for the 2008 standard weather data of Cheon-an, then apply summer data that odor dispersion is active, winter data relatively slow and an annual mean velocity and wind to the simulation. Even if a crematory and neighborhood facility located on south and north from waste treatment facility are at the low rate, the south and north wind will be applied to the simulation. Fourth, with CFD simulation result, predict an odor dispersion, then propose a solution which is considered an odor dispersion, a location of an opening and the arrangement of the trees. Consequently, this study will have an effect on an environment of a resident.

  • PDF

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.