• Title/Summary/Keyword: Warped Product Manifold

Search Result 58, Processing Time 0.027 seconds

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.

ON CONTACT SLANT SUB MANIFOLD OF L × f F

  • Sohn, Won-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.129-134
    • /
    • 2004
  • It is well known that the warped product $L\;{\times}\;{_f}\;F$ of a line L and a Kaehler manifold F is an almost contact Riemannian manifold which is characterized by some tensor equations appeared in (1.7) and (1.8). In this paper we determine contact slant submanifolds tangent to the structure vector field of $L\;{\times}\;{_f}\;F$.

AN OPTIMAL INEQUALITY FOR WARPED PRODUCT LIGHTLIKE SUBMANIFOLDS

  • Kumar, Sangeet;Pruthi, Megha
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.289-304
    • /
    • 2021
  • In this paper, we establish several geometric characterizations focusing on the relationship between the squared norm of the second fundamental form and the warping function of SCR-lightlike warped product submanifolds in an indefinite Kaehler manifold. In particular, we find an estimate for the squared norm of the second fundamental form h in terms of the Hessian of the warping function λ for SCR-lightlike warped product submanifolds of an indefinite complex space form. Consequently, we derive an optimal inequality, namely $${\parallel}h{\parallel}^2{\geq}2q\{{\Delta}(ln{\lambda})+{\parallel}{\nabla}(ln{\lambda}){\parallel}^2+\frac{c}{2}p\}$$, for SCR-lightlike warped product submanifolds in an indefinite complex space form. We also provide one non-trivial example for this class of warped products in an indefinite Kaehler manifold.

ON THE RICCI CURVATURE OF SUBMANIFOLDS IN THE WARPED PRODUCT L × f F

  • Kim, Young-Mi;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.693-708
    • /
    • 2002
  • The warped product L$\times$$_{f}$ F of a line L and a Kaehler manifold F is a typical example of Kenmotsu manifold. In this paper we determine submanifolds of L$\times$$_{f}$ F which are tangent to the structure vector field and satisfy certain conditions concerning with Ricci curvature and mean curvature.ure.

PSEUDO SYMMETRIC AND PSEUDO RICCI SYMMETRIC WARPED PRODUCT MANIFOLDS

  • De, Uday Chand;Murathan, Cengizhan;Ozgur, Cihan
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.615-621
    • /
    • 2010
  • We study pseudo symmetric (briefly $(PS)_n$) and pseudo Ricci symmetric (briefly $(PRS)_n$) warped product manifolds $M{\times}_FN$. If M is $(PS)_n$, then we give a condition on the warping function that M is a pseudosymmetric space and N is a space of constant curvature. If M is $(PRS)_n$, then we show that (i) N is Ricci symmetric and (ii) M is $(PRS)_n$ if and only if the tensor T defined by (2.6) satisfies a certain condition.

CONFORMAL DEFORMATION ON A SEMI-RIEMANNIAN MANIFOLD (II)

  • Jung, Yoon-Tae;Lee, Soo-Young;Shin, Mi-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.119-126
    • /
    • 2003
  • In this paper, when N is a compact Riemannian manifold, we considered the positive time solution to equation $\Box_gu(t,x)-c_nu(t,x)+c_nu(t,x)^{(n+3)/(n-1)}$ on M =$(-{\infty},+{\infty})\;{\times}_f\;N$, where $c_n$ =(n-1)/4n and $\Box_{g}$ is the d'Alembertian for a Lorentzian warped manifold.

  • PDF

CRITICAL POINTS AND WARPED PRODUCT METRICS

  • Hwang, Seung-Su;Chang, Jeong-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.117-123
    • /
    • 2004
  • It has been conjectured that, on a compact orient able manifold M, a critical point of the total scalar curvature functional restricted the space of unit volume metrics of constant scalar curvature is Einstein. In this paper we show that if a manifold is a 3-dimensional warped product, then (M, g) cannot be a critical point unless it is isometric to the standard sphere.