• 제목/요약/키워드: Wall friction

검색결과 503건 처리시간 0.026초

Direct Numerical Simulation of Turbulent Scalar Transport in a Channel with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.597-605
    • /
    • 2004
  • Turbulent temperature field in a channel subject to strong wall injection has been investigated via direct numerical simulation technique. These flows are pertinent to internal flows inside hybrid rocket motors. A simplified model problem where a regression process at the propellant surface is idealized by wall injection has been investigated to understand how the temperature field is modified. The effect of strong wall injection displaces thermal boundary layer away from the wall and this causes a sharp drop of friction temperature. Turbulent diffusivity and dissipation time scale for temperature field are found to show large variations in the streamwise direction under application of wall blowing. It is, thus, expected that more sophisticated turbulence models would be required to predict the disturbed temperature field accurately.

연직 슬릿 유공벽의 투수계수 계산 방법의 비교 (Comparison of Methods to Calculate Permeability Parameter of Perforated Wall with Vertical Slits)

  • 서경덕;지창환;김열우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.506-509
    • /
    • 2008
  • Mathematical models have been developed to calculate hydrodynamic characteristics of perforated-wall structures. Most of the models separate the fluid regions into front and back of the wall, assume the solution in each region, and calculate the solution by using the matching condition at the wall. The matching condition involves the permeability parameter, which can be calculated by the methods proposed by Mei et al. or Sollitt and Cross. In this study, we compare these two methods. The former is advantageous because all the related variables are known, but it gives wrong result in the limit of long waves, i.e. zero transmission and perfect reflection of very long waves. In deep water, the latter predicts smaller transmission and larger reflection than the former, and vice versa in shallow water. In the latter method, the friction coefficient decreases as the wall thickness or the porosity of the wall increases.

  • PDF

Pebble flow in the HTR-PM reactor core by GPU-DEM simulation: Effect of friction

  • Zuoyi Zhang;Quan Zou;Nan Gui;Bing Xia;Zhiyong Liu;Xingtuan Yang
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3835-3850
    • /
    • 2024
  • The high-temperature gas-cooled reactor (HTGR) with spherical fuel elements contains complex pebble flow. The flow behavior of pebbles is influenced by various factors, such as pebble density, friction coefficient, wall structure, and discharge port size. Using a GPU-DEM numerical model, the effects of the friction coefficient on the cyclic loading and unloading of pebbles in the full-scale HTR-PM are studied. Numerical simulations with up to 420,000 spherical pebbles are conducted. Four sets of friction coefficient values are determined for comparative analysis based on experimental measurements. Discharging speed, residence time, stress, porosity, and velocity distribution are quantitatively analyzed. In addition, a comparison with the CT-PFD experiment is carried out to validate the numerical model. The results show that near-wall retention phenomena are observed in the reactor core only when using large friction coefficients. However, using friction coefficient values closer to the measured experimental values, the pebble bed in HTR-PM exhibited good flow characteristics. Furthermore, the friction coefficient also influences the porosity and velocity distribution of the pebble bed, with lower friction coefficients resulting in lower overall stress in the bed. The discharge outlet's influence varies with different friction coefficient values. In summary, this study demonstrates that the value of the friction coefficient has a complex influence on the pebble flow in HTR-PM, which provides important insights for future numerical and experimental studies in this field.

버팀대로 보강된 널말뚝의 안정해석 (Stability Analysis of Sheet Pile Reinforced with Strut)

  • 김지훈;강예묵;지인택
    • 농업과학연구
    • /
    • 제24권2호
    • /
    • pp.226-236
    • /
    • 1997
  • The results obtained by elasto-plastic analysis method about the displacement, deformation and stability on the soft ground excavation using sheet pile were summarized as follows ; 1. In the case of strut 1 step, the maximum wall displacement value in the first and the second excavation was small, but it increase remarkably after the third excavation and when the excavation depth was 8m, the point of maximum wall displacement was shown 0.75H~0.8H. 2. The value of safety factor(Fs) was increased with increasing of the penetration depth of sheet pile, cohesion and internal friction angle of ground. Safety factor was mostly effected by penetration depth of sheet pile and more effected by cohesion than internal friction angle of ground. 3. Since the deformation of sheet pile of this ground from the results of analysis and measurement increased remarkabaly after 6m excavation depth, it was desirable that the point of strut installation was GL-6m. 4. Safe excavation depth on ground by analysis considered penetration depth, cohesion and internal friction was shown at the table 3.

  • PDF

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • 제8권4호
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

딥 드로잉 벽면 만곡에 미치는 소재 및 가공조건의 영향 (Effects of sheet and stamping process variables on side wall curl)

  • 박기철;한수식;조태현;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.53-57
    • /
    • 1998
  • In order to investigate the effects of the variables during the stamping process upon the side wall curl behavior, experiments and finite element analyses were done using a 90 degree draw-bending test. The variables considered were the die radius, the forming speed, the restraint force, the lubrication and the sheet grade. The experiments and simulation conditions were selected according to the design of experiment (DOE) approach. The effects of the restraint force, the lubrication and the forming speed were the same for both high strength and mild steels, but the effects of the die radius on the side wall curl were dependent on the magnitude of the die radius and the sheet grade. A straight side wall was observed for both high strength and mild steels when the die radius was about 2∼3 times of the sheet thickness. It was recommended that the restraint force, the forming speed and the friction be increased in order to reduce the side wall curl.

  • PDF

고강도 전단철근을 사용한 철근콘크리트 전단벽체-기초계면에서의 전단마찰 거동특성에 대한 해석적 연구 (Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar)

  • 천주현;이기호;백장운;박홍근;신현목
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.473-480
    • /
    • 2016
  • 본 연구에서는 550 MPa급 고강도 철근을 사용한 낮은 형상비를 갖는 철근콘크리트 전단벽체의 벽체-기초 접합부에서의 전단마찰 파괴거동을 평가하기 위한 해석적 방안을 마련하는 것을 목표로 한다. 형상비, 경계면에서의 마찰계수, 배근상세, 각 방향으로의 철근비, 재료물성 등의 다양한 변수를 갖는 총 16개의 실험체를 검증 대상으로 선정하여 저자 등에 의해 개발된 비선형 유한요소해석 프로그램(RCAHEST)에 콘크리트 구조설계기준(2012)과 CEB-FIP Model code 2010을 바탕으로 경계면에서 수정된 전단마찰 구성관계식을 적용하여 해석을 수행하였다. 최대 하중에 대한 실험과 해석으로부터의 결과는 평균과 변동계수가 각각 1.04와 17% 정도로 예측하였고 일부 실험체를 제외하고 파괴모드와 파괴시까지의 전반적인 거동 특성을 적절히 평가하였다. 결과를 종합해 볼 때, 수정된 전단마찰 구성관계식을 적용한 해석프로그램은 해석 결과에 비교적 높은 신뢰도를 확보하고 있는 것으로 판단된다.

고온 고속유동으로 인한 실제 기체효과의 수치해석적 연구 (A Numerical Study on Real Gas Effect due to High Temperature and Speed Flow)

  • 송동주
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2431-2442
    • /
    • 1994
  • In this paper the efficient space marching Viscous Shock Layer and Parabolized Navier-Stokes method have been applied to study the complex 3-D hypersonic equilibrium chemically reacting flowfilelds over sphere-cone($10^{\circ}$) vehicle at low angles of attack($0^{\circ}~5^{\circ}), Mach 20, and an altitude of 35km. The current bluntbody/afterbody space marching numerical method predicts the complex flowfields accurately and efficiently even on a small computer. The shock thickness from equilibrium air model is thinner than that from the perfect gas model. The windside wall heat-transfer rate, pressure and skin friction force were increased significantly when compared with those of leeside. The CA, CN, CM were increased almost linearly with the angle of attack in this region. The wall pressure, heat transfer, skin friction and axial force coeffient from equilibrium model were much higher than those from perfect gas model. The center of pressure moved forward with the increase of angle of attack.

압축기용 라비린스 실의 동특성 해석 (Rotordynamic Analysis of Compressor Labyrinth Seals)

  • 하태웅;이안성
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.849-855
    • /
    • 1998
  • An analysis of lateral hydrodynamic forces of compressor labyrinth seals is presented. Basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculaton of wall shear stresses and recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for a small motion about the centered position by expansion in the eccentricity ratio. Integraton of the resultant first-order pressure distribution over the seal defines the rotordynamic coefficients. As an application a rotordynamic analysis of the balance drum labyrinth seal found in an ethylene regrigeration copmressor is carried out. The rotordynamic characteristic results of the labyrinth seal are presented and compared with other types of seals, honeycomb seal and smooth seal.

  • PDF