Acknowledgement
The authors are grateful for the support of this research by the National Science and Technology Major Project of China (Grant No. 2011ZX06901-003).
References
- S. Golshan, R. Sotudeh-Gharebagh, R. Zarghami, N. Mostoufi, B. Blais, Review and implementation of CFD-DEM applied to chemical process systems, Chem. Eng. Sci. 221 (2020) 115646, https://doi.org/10.1016/j.ces.2020.115646.
- S. Utili, T. Zhao, G.T. Houlsby, 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power, Eng. Geol. 186 (2015) 3-16, https://doi.org/10.1016/j.enggeo.2014.08.018.
- S.B. Yeom, E.S. Ha, M.S. Kim, S.H. Jeong, S.J. Hwang, Application of the discrete element method for manufacturing process simulation in the pharmaceutical industry [Journal Article; Review], Pharmaceutics 11 (8) (2019), https://doi.org/10.3390/pharmaceutics11080414.
- M. Lei, S. Liu, Q. Wu, S. Xu, B. Li, Research on purge gas flow characteristics in different pebble bed structures for fusion blanket, Prog. Nucl. Energy 155 (2023) 104488, https://doi.org/10.1016/j.pnucene.2022.104488.
- H. Wu, N. Gui, X. Yang, J. Tu, S. Jiang, Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation, Int. J. Heat Mass Tran. 110 (2017) 393-405, https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.035.
- W. Xi, Q. Wu, M. Lei, J. Wang, Z. Liu, Numerically investigation of the neutron irradiation swelling on the mechanical and structural evolution of beryllium pebble bed, Fusion Eng. Des. 195 (2023) 113966, https://doi.org/10.1016/j.fusengdes.2023.113966.
- S. Jiang, J. Tu, X. Yang, N. Gui, Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core, Springer Singapore Pte. Limited, 2020, https://doi.org/10.1007/978-981-15-9565-3.
- Z. Zhang, Z. Wu, D. Wang, Y. Xu, Y. Sun, Current status and technical description of Chinese 2×250MWth HTR-PM demonstration plant, Nucl. Eng. Des. 239 (7) (2009) 1212-1219, https://doi.org/10.1016/j.nucengdes.2009.02.023.
- Q. Zou, N. Gui, X. Yang, J. Tu, S. Jiang, Numerical study of the effects of loading method on mixing of two kinds of pebbles in HTGR: a GPU-DEM simulation, Prog. Nucl. Energy 165 (2023) 104905, https://doi.org/10.1016/j.pnucene.2023.104905.
- B. Li, N. Gui, H. Wu, X. Yang, J. Tu, Effects of the 3-D wall structures on the flow and mixing characteristics of pebbles in pebble beds in HTR-10, Ann. Nucl. Energy 164 (2021) 108607, https://doi.org/10.1016/j.anucene.2021.108607.
- M. Wu, N. Gui, X. Liu, X. Yang, J. Tu, Numerical analysis of the effects of different outlet sizes on pebble flows in HTR-10 pebble beds, Nucl. Eng. Des. 387 (2022) 111620, https://doi.org/10.1016/j.nucengdes.2021.111620.
- M. Wu, N. Gui, H. Wu, X. Yang, J. Tu, Numerical study of mixing pebble flow with different density in circulating packed bed, Ann. Nucl. Energy 130 (2019) 483-492, https://doi.org/10.1016/j.anucene.2019.03.020.
- F.P. Bowden, J.E. Young, Friction of diamond, graphite, and carbon and the influence of surface films, Proc. Roy. Soc. Lond. Math. Phys. Sci. 208 (1095) (1951) 444-455, https://doi.org/10.1098/rspa.1951.0173.
- O.M. Stansfield, Friction and wear of graphite in dry helium at 25, 400, and 800◦C, Nucl. Appl. 6 (4) (1969) 313-320, https://doi.org/10.13182/NT69-A28339.
- E. Csapo, H. Zaidi, D. Paulmier, Friction behaviour of a graphite-graphite dynamic electric contact in the presence of argon, Wear 192 (1) (1996) 151-156, https://doi.org/10.1016/0043-1648(95)06788-4.
- Y. Iwasa, A.F. Ashaboglu, E.R. Rabinowicz, T. Tachibana, K. Kobashi, Cryotribology of diamond and graphite, Cryogenics 37 (12) (1997) 801-805, https://doi.org/10.1016/S0011-2275(97)00073-8.
- X. Luo, X. Li, S. Yu, Nuclear graphite friction properties and the influence of friction properties on the pebble bed, Nucl. Eng. Des. 240 (10) (2010) 2674-2681, https://doi.org/10.1016/j.nucengdes.2010.07.030.
- L. Xiaowei, Y. Suyuan, S. Xuanyu, H. Shuyan, The influence of roughness on tribological properties of nuclear grade graphite, J. Nucl. Mater. 350 (1) (2006) 74-82, https://doi.org/10.1016/j.jnucmat.2005.11.013.
- J. Xiao, L. Zhang, K. Zhou, J. Li, X. Xie, Anisotropic friction behaviour of highly oriented pyrolytic graphite, Carbon 65 (2013) 53-62, https://doi.org/10.1016/j.carbon.2013.07.101.
- B. Liu, H. Zhao, X. Li, Z. Yang, D. Zhang, Effect of pore structure on the thermophysical and frictional properties of high-density graphite, Microporous Mesoporous Mater. 330 (2022) 111613, https://doi.org/10.1016/j.micromeso.2021.111613.
- L. Vergari, J. Quincey, G. Meric De Bellefon, T. Merriman, M. Hackett, Self-lubrication of nuclear graphite in argon at high temperature, Tribol. Int. 177 (2023) 107946, https://doi.org/10.1016/j.triboint.2022.107946.
- P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1) (1979).
- H. Suikkanen, J. Ritvanen, P. Jalali, R. Kyrki-Rajamaki, Discrete element modelling of pebble packing in pebble bed reactors, Nucl. Eng. Des. 273 (2014) 24-32, https://doi.org/10.1016/j.nucengdes.2014.02.022.
- C. Xie, H. Ma, Y. Zhao, Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction, Eng. Anal. Bound. Elem. 105 (2019) 207-220, https://doi.org/10.1016/j.enganabound.2019.04.013.
- J. Wang, M. Lei, H. Yang, K. Xu, S. Xu, Effects of coefficient of friction and coefficient of restitution on static packing characteristics of polydisperse spherical pebble bed, Particuology 57 (2021) 1-9, https://doi.org/10.1016/j.partic.2020.12.013.
- S. Wei, H. Wei, H. Saxen, Y. Yu, Numerical analysis of the relationship between friction coefficient and repose angle of blast furnace raw materials by discrete element method, Materials 15 (3) (2022) 903, https://doi.org/10.3390/ma15030903.
- Y. Li, N. Gui, X. Yang, J. Tu, S. Jiang, Effect of friction on pebble flow pattern in pebble bed reactor, Ann. Nucl. Energy 94 (2016) 32-43, https://doi.org/10.1016/j.anucene.2016.02.022.
- Q. Zou, N. Gui, X. Yang, J. Tu, S. Jiang, A GPU-based DEM model for the pebble flow study in packed bed: simulation scheme and validation, Powder Technol. 118441 (2023), https://doi.org/10.1016/j.powtec.2023.118441.
- J. Horabik, M. Molenda, Parameters and contact models for DEM simulations of agricultural granular materials: a review, Biosyst. Eng. 147 (2016) 206-225, https://doi.org/10.1016/j.biosystemseng.2016.02.017.
- M. Marigo, E.H. Stitt, Discrete element method (DEM) for industrial applications: comments on calibration and validation for the modelling of cylindrical pellets, Kona Powder and Particle Journal 32 (2015) 236-252, https://doi.org/10.14356/kona.2015016.
- H. Wu, N. Gui, X. Yang, J. Tu, S. Jiang, Effects of particle size and region width on the mixing and dispersion of pebbles in two-region pebble bed, Granul. Matter 18 (4) (2016) 1, https://doi.org/10.1007/s10035-016-0672-7.
- U. Ayachit, The ParaView guide: a parallel visualization application, In Retrieved from Retrieved from, https://api.semanticscholar.org/CorpusID:62297869, 2015.
- X. Wan, X. Liu, J. Miao, P. Cong, Y. Zhang, Research on the computed tomography pebble flow detecting system for HTR-PM, Science and Technology of Nuclear Installations (2017) 1-13, https://doi.org/10.1155/2017/5403701, 2017.
- G.E. Mueller, A simple method for determining sphere packed bed radial porosity, Powder Technol. 229 (2012) 90-96, https://doi.org/10.1016/j.powtec.2012.06.013.
- C. Liu, Y. Gao, X. Dong, Y. Wang, J. Liu, Third generation of vortex identification methods: omega and Liutex/Rortex based systems, J. Hydrodyn. 31 (2) (2019) 205-223, https://doi.org/10.1007/s42241-019-0022-4.
- Y. Robert, T. Siaraferas, M. Fratoni, Hyper-fidelity depletion with discrete motion for pebble bed reactors, Scientific Reports 13 (1) (2023) 12711. https://doi.org/10.1038/s41598-023-39186-3.
- S. Schunert, J. Ortensi, Y. Wang, P. Balestra, M. Jaradat, O. Calvin, J. Hanophy, L. Harbour, An equilibrium core depletion algorithm for pebble-bed reactors in the Griffin code, Ann. Nucl. Energy 192 (2023) 109980. https://doi.org/10.1016/j.anucene.2023.109980.
- R. Li, Z. Liu, Z. Feng, J. Liang, High-fidelity MC-DEM modeling and uncertainty analysis of HTR-PM first criticality, Front. Energy Res. 9 (2022) 822780. htt ps://doi.org/10.3389/fenrg.2021.822780.
- V. Fanny, K. Jiri, K. Jarmo, P.H. Michael, P. Andreas. Statistical burnup distribution of moving pebbles in the high-temperature reactor HTR-PM. ASME J. Nuclear Rad. Sci. 6 (2) (2020) 021108. https://doi.org/10.1115/1.4044910.
- D. She, J. Guo, Z. Liu, L. Shi, PANGU code for pebble-bed HTGR reactor physics and fuel cycle simulations, Annals of Nuclear Energy 126 (2019) 48-58. https://doi.org/10.1016/j.anucene.2018.11.005.
- Y. Tang, L. Zhang, Q. Guo, B. Xia, Z. Yin, J. Cao, J. Tong, C.H. Rycroft, Analysis of the pebble burnup profile in a pebble-bed nuclear reactor, Nucl. Eng. Des. 345 (2019) 233-251. https://doi.org/10.1016/j.nucengdes.2019.01.030.
- C. HAO, F. LI, Investigation on the pebble bed flow model in VSOP, Nucl. Eng. Des. 271 (2014) 352.
- N. Gui, S.Y. Jiang, X.T. Yang, J.Y. Tu, A review of recent study on the characteristics and applications of pebble flows in nuclear engineering, Exp. Computat. Multiphase Flow 4 (2022) 339-349. https://doi.org/10.1007/s42757-022-0140-z.
- D. She, F. Chen, B. Xia, L. Shi, Simulation of the HTR-10 operation history with the PANGU code, Front. Energy Res. 14 (9) (2021) 704116. https://doi.org/10.3389/fenrg.2021.704116.