• Title/Summary/Keyword: Wall Design

Search Result 2,975, Processing Time 0.028 seconds

Optimum Design of Cantilever Retaining Wall (켄틸레버 옹벽의 최적 설계)

  • 김종옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.90-99
    • /
    • 1995
  • In this study, the algorithm for the optimum design of cantilever retaining wall was de veloped and solved using Modified Method of Feasible Directions(MMFD), Sequential Linear Programming(SLP) and Sequential Quadratic Programming(SQP). The algorithm was applied to the optimum design of 3-different height cantilever re tairing walls. It was shown that even though the starting points and optimization strategies are dif- ferent, the objective function and optimum design variables converge to within a close range, and consequently the reliability and efficiency of the underlying optimum design algorithm can be verified. It is expected that the optimum design algorithm developed in this study can be utilized efficiently for the optimum design of any scale cantilever retaining wall. Using optimum design method, cantilever retaining wall will be designed more economi- cally and reasonably than using traditional design method.

  • PDF

Optimum seismic design of unbonded post-tensioned precast concrete walls using ANN

  • Abdalla, Jamal A.;Saqan, Elias I.;Hawileh, Rami A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.547-567
    • /
    • 2014
  • Precast Seismic Structural Systems (PRESSS) provided an iterative procedure for obtaining optimum design of unbonded post-tensioned coupled precast concrete wall systems. Although PRESSS procedure is effective, however, it is lengthy and laborious. The purpose of this research is to employ Artificial Neural Network (ANN) to predict the optimum design parameters for such wall systems while avoiding the demanding iterative process. The developed ANN model is very accurate in predicting the nondimensional optimum design parameters related to post-tensioning reinforcement area, yield force of shear connectors and ratio of moment resisted by shear connectors to the design moment. The Mean Absolute Percent Error (MAPE) for the test data for these design parameters is around %1 and the correlation coefficient is almost equal to 1.0. The developed ANN model is then used to study the effect of different design parameters on wall behavior. It is observed that the design moment and the concrete strength have the most influence on the wall behavior as compared to other parameters. Several design examples were presented to demonstrate the accuracy and effectiveness of the ANN model.

Economic Evaluation Method by Design Method ASD and LRFD of Aluminum Curtain wall (알루미늄 커튼월의 ASD/LRFD설계방법에 따른 경제성 평가 방법)

  • Moon, Sang-Deok;Ock, Jong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.16-17
    • /
    • 2014
  • The curtain wall construction applied on high-rise building facades in Korea became generalized, but specialty of the CMr(Construction Manager) who needs to perform economical project management with specialty in the curtain wall construction is still lacking. Therefore, this study analyzed the structure design standard of the curtain wall, researched economical design alternatives. Based on the research results, if the ratio of dead load against wind load is less than 0.1256, LRFD will be more economical.

  • PDF

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

Seismic Capacity Design and Retrofit of Reinforced Concrete Staggered Wall Structures

  • Kim, Jinkoo;Choi, Younghoo
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.285-300
    • /
    • 2017
  • This study investigates the seismic performance of a staggered wall structure designed with conventional strength based design, and compares it with the performance of the structure designed by capacity design procedure which ensures strong column-weak beam concept. Then the seismic reinforcement schemes such as addition of interior columns or insertion of rotational friction dampers at the ends of connecting beams are validated by comparing their seismic performances with those of the standard model structure. Fragility analysis shows that the probability to reach the dynamic instability is highest in the strength designed structure and is lowest in the structure with friction dampers. It is also observed that, at least for the specific model structures considered in this study, R factor of 5.0 can be used in the seismic design of staggered wall structures with proposed retrofit schemes, while R factor of 3.0 may be reasonable for standard staggered wall structures.

Earth Pressuroes of Tieback Walls in Sand (사질토에 시공된 앵커토류벽의 토압분포에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-28
    • /
    • 1998
  • The design of a ground anchor wall calculating the design anchor force and anchored walls depends primarily on the earth pressure acting on anchored w deflection of the wall, the wall stiffness, distribution exists for anchored walls. In the apparent earth pressure envelope design of anchored walls. In this study, full scale anchored w pressure distribution was obtained from function. Earth pressures obtained from pressure and with the apparent earth pre the anchored wall in sand. It is conclude is appropriate for the anchored wall design.

  • PDF

An Economic Analysis of Irregular Wall Design Considering Effective Width (벽체의 유효폭을 고려한 이형벽체의 경제성 분석)

  • Han, Kyung-Soo;Bang, Jung-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.83-84
    • /
    • 2014
  • The whole wall system behaves as one section because single walls composing irregular wall are connected to each other. Although stress of a single wall is affected to the connected wall under lateral load, the stress is not transferred to whole sections and is concentrated on particular part of the wall as well. Therefore these walls can be divided into the effective and ineffective section. The purpose of this study is to compare design result of irregular wall using codes and previous studies on an effective width of the wall and to analyze reduction of the longitudinal bar of irregular wall.

  • PDF

Simplified Formula for Design of Fixed Earth Supported Sheet-Pile Wall in Sand (사질토 지반 앵커식 고정지지 널말뚝 설계용 간편식)

  • Yang, Woo-Shik;Kim, Khi-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.89-94
    • /
    • 1998
  • Stock(1992) had developed the graph for solving the penetration depth, tieforce of anchor and maximum bending moment of sheet-pile wall for cantilever and free earth supported anchored wall. Kim(1995) had developed graph for design of fixed earth supported anchored wall. In this paper, the simplified formulas for calculating the penetration depth, tieforce of anchor and maximum bending moment of sheet-pile wall was developed for fixed earth supported anchored wall in sand. The developed formulas may be helpful for design or sheet pile wall.

  • PDF

A Study on the Structural Performance Review as Design Change to the Unit Curtain Wall Profile (유닛 커튼월 프로파일 형상 변화에 따른 구조 성능 검토에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Hae-Na;Park, Jun-Seo;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.247-248
    • /
    • 2023
  • The unit curtain wall is an exterior finish currently used on the exterior walls of high-rise buildings. Although the structural impact is not significant due to the non-strength wall, in the case of the unit curtain wall to which the factory manufacturing method is applied, deformation of the profile may occur according to its own weight. Therefore, in this study, stability is evaluated through design standard calculation applied when finishing the outer wall according to the design shape of the unit curtain wall profile.

  • PDF

SHIELD DESIGN OF CONCRETE WALL BETWEEN DECAY TANK ROOM AND PRIMARY PUMP ROOM IN TRIGA FACILITY

  • Khan, M J H;Rahman, M;Ahmed, F U;Bhuiyan, S I;Haque, A;Zulquarnain, A
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.190-193
    • /
    • 2007
  • The objective of this study is to recommend the radiation protection design parameters from the shielding point of view for concrete wall between the decay tank room and the primary pump room in TRIGA Mark-II Research Reactor Facility. The shield design for this concrete wall has been performed with the help of Point-kernel Shielding Code Micro-Shield 5.05 and this design was also validated based on the measured dose rate values with Radiation Survey Meter (G-M Counter) considering the ICRP-60 (1990) recommendations for occupational dose rate limit ($10{\mu}Sv/hr$). The recommended shield design parameters are: (i) thickness of 114.3 cm Ilmenite-Magnetite Concrete (IMC) or 129.54 cm Ordinary Reinforced Concrete (ORC) for concrete wall A (ii) thickness of 66.04 cm Ilmenite-Magnetite Concrete (IMC) or 78.74 cm Ordinary Reinforced Concrete (ORC) for concrete wall B and (iii) door thickness of 3.175 cm Mild Steel (MS) on the entrance of decay tank room. In shielding efficiency analysis, the use of I-M concrete in the design of this concrete wall shows that it reduced the dose rate by a factor of at least 3.52 times approximately compared to ordinary reinforced concrete.