• Title/Summary/Keyword: Wafer Surface

Search Result 968, Processing Time 0.026 seconds

Study on Improvement of Surface Temperature Uniformily in Flate-Plate Heat Pipe Hot Chuck (평판형 히트파이프식 핫척의 표면온도 균일화 향상을 위한 연구)

  • Kim, D.H.;Rhi, S.H.;Lim, T.K.;Lee, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2369-2374
    • /
    • 2008
  • In the precision hot plate for wafer processing, the temperature uniformity of upper plate surface is one of the key factors affecting the quality of wafers. Precision hot plates require temperature variations less than ${\pm}1.5%$ during heating to $120^{\circ}C$. In this study, we have manufactured the flat plate heat pipe hot chuck of circle type(300mm) and investigated the operating characteristics of flat plate heat pipe hot chuck experimentally. Various liquids(aceton, FC-40, water) were used as the working fluid and charging ratio was changed($14{\sim}36\;vol.%$). Several cases were tested to improve temperature uniformity. Major working fluid to be investigated was water. Using water, various parameters such as charging ratio, wafer operation on-off time, different working fluids. In case of water, the temperature uniformity was ${\pm}1.5%$, response time of wafer were investigated.

  • PDF

Effects of Wafer Cleaning and Heat Treatment in Glass/Silicon Wafer Direct Bonding (유리/실리콘 기판 직접 접합에서의 세정과 열처리 효과)

  • 민홍석;주영창;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • We have investigated the effects of various wafers cleaning on glass/Si bonding using 4 inch Pyrex glass wafers and 4 inch silicon wafers. The various wafer cleaning methods were examined; SPM(sulfuric-peroxide mixture, $H_2SO_4:H_2O_2$ = 4 : 1, $120^{\circ}C$), RCA(company name, $NH_4OH:H_2O_2:H_2O$ = 1 : 1 : 5, $80^{\circ}C$), and combinations of those. The best room temperature bonding result was achieved when wafers were cleaned by SPM followed by RCA cleaning. The minimum increase in surface roughness measured by AFM(atomic force microscope) confirmed such results. During successive heat treatments, the bonding strength was improved with increased annealing temperatures up to $400^{\circ}C$, but debonding was observed at $450^{\circ}C$. The difference in thermal expansion coefficients between glass and Si wafer led debonding. When annealed at fixed temperatures(300 and $400^{\circ}C$), bonding strength was enhanced until 28 hours, but then decreased for further anneal. To find the cause of decrease in bonding strength in excessively long annealing time, the ion distribution at Si surface was investigated using SIMS(secondary ion mass spectrometry). tons such as sodium, which had been existed only in glass before annealing, were found at Si surface for long annealed samples. Decrease in bonding strength can be caused by the diffused sodium ions to pass the glass/si interface. Therefore, maximum bonding strength can be achieved when the cleaning procedure and the ion concentrations at interface are optimized in glass/Si wafer direct bonding.

A Study on the Optimal Machining of 12 inch Wafer Polishing by Taguchi Method (다구찌 방법에 의한 12인치 웨이퍼 폴리싱의 가공특성에 관한 연구)

  • Choi, Woong-Kirl;Choi, Seung-Gun;Shin, Hyun-Jung;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.48-54
    • /
    • 2012
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon. However, for many companies, it is hard to produce 400mm or 450mm wafers, because of excesive funds for exchange the equipments. Therefore, it is necessary to investigate 300mm wafer to obtain a better efficiency and a good property rate. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This research investigated the surface characteristics that apply variable machining conditions and Taguchi Method was used to obtain more flexible and optimal condition. In this study, the machining conditions have head speed, oscillation speed and polishing time. By using optimum condition, it achieves a ultra precision mirror like surface.

Analysis of Wafer Cleaning Solution Characteristics and Metal Dissolution Behavior according to the Addition of Chelating Agent (착화제 첨가에 따른 웨이퍼 세정 용액 특성 분석 및 금속 용해 거동)

  • Kim, Myungsuk;Ryu, Keunhyuk;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The surface of silicon dummy wafers is contaminated with metallic impurities owing to the reaction with and adhesion of chemicals during the oxidation process. These metallic impurities negatively affect the device performance, reliability, and yield. To solve this problem, a wafer-cleaning process that removes metallic impurities is essential. RCA (Radio Corporation of America) cleaning is commonly used, but there are problems such as increased surface roughness and formation of metal hydroxides. Herein, we attempt to use a chelating agent (EDTA) to reduce the surface roughness, improve the stability of cleaning solutions, and prevent the re-adsorption of impurities. The bonding between the cleaning solution and metal powder is analyzed by referring to the Pourbaix diagram. The changes in the ionic conductivity, H2O2 decomposition behavior, and degree of dissolution are checked with a conductivity meter, and the changes in the absorbance and particle size before and after the reaction are confirmed by ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) analyses. Thus, the addition of a chelating agent prevents the decomposition of H2O2 and improves the life of the silicon wafer cleaning solution, allowing it to react smoothly with metallic impurities.

Development of Cleaning Agents for Solar Silicon Wafer (태양광 실리콘 웨이퍼 세정제 개발)

  • Bae, Soo-Jeong;Lee, Ho-Yeoul;Lee, Jong-Gi;Bae, Jae-Heum;Lee, Dong-Gi
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • Cleaning procedure of solar silicon wafer, following ingot sawing process in solar cell production is studied. Types of solar silicon wafer can be divided into monocrystalline or multicrystalline, and slurry sawn wafer or diamond sawn wafer according to the ingot growing methods and the sawing methods, respectively. Wafer surface and contaminants can vary with these methods. The characterisitics of contaminants and wafer surface are investigated for each cleaning substrate, and appropriate cleaning agents are developed. Physical properties and cleaning ability of the cleaning agents are evaluated in order to verify the application in the industry. The wafers cleaned with the cleaning agents do not show any residual contaminants when analyzed by XPS and regular patterns are formed after texturization. Furthermore, the cleaning agents are applied in the production industry, which shows superior cleaning results compared to the existing cleaning agents.

Wafer Edge Profile Control for Improvement of Removal Uniformity in Oxide CMP (산화막CMP의 연마균일도 향상을 위한 웨이퍼의 에지형상제어)

  • Choi, Sung-Ha;Jeong, Ho-Bin;Park, Young-Bong;Lee, Ho-Jun;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.289-294
    • /
    • 2012
  • There are several indicators to represent characteristics of chemical mechanical planarization (CMP) such as material removal rate (MRR), surface quality and removal uniformity on a wafer surface. Especially, the removal uniformity on the wafer edge is one of the most important issues since it gives a significant impact on the yield of chip production on a wafer. Non-uniform removal rate at the wafer edge (edge effect) is mainly induced by a non-uniform pressure from nonuniform pad curvature during CMP process, resulting in edge exclusion which means the region that cannot be made to a chip. For this reason, authors tried to minimize the edge exclusion by using an edge profile control (EPC) ring. The EPC ring is equipped on the polishing head with the wafer to protect a wafer from the edge effect. Experimental results showed that the EPC ring could dramatically minimize the edge exclusion of the wafer. This study shows a possibility to improve the yield of chip production without special design changes of the CMP equipment.

Thermal Damage Characterization of Silicon Wafer Subjected to CW Laser Beam (CW 레이저 조사에 의한 실리콘 웨이퍼의 손상 평가)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1241-1248
    • /
    • 2012
  • The objective of this study is to evaluate the thermal damage characterization of a silicon wafer subjected to a CW laser beam. The variation in temperature and stress during laser beam irradiation has been predicted using a three-dimensional numerical model. The simulation results indicate that the specimen might crack when a 93-$W/cm^2$ laser beam is irradiated on the silicon wafer, and surface melting can occur when a 186-$W/cm^2$ laser beam is irradiated on the silicon wafer. In experiments, straight cracks in the [110] direction were observed for a laser irradiance exceeding 102 $W/cm^2$. Furthermore, surface melting was observed for a laser irradiance exceeding 140 $W/cm^2$. The irradiance for surface melting is less than that in the simulation results because multiple reflections and absorption of the laser beam might occur on the surface cracks, increasing the absorbance of the laser beam.

A Study on Silicon Wafer Surfaces Treated with Electrolyzed Water (전리수를 이용한 Si 웨이퍼 표면 변화 연구)

  • 김우혁;류근걸
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.74-79
    • /
    • 2002
  • In the a rapid changes of the semiconductor manufacturing technologies for early 21st century, it may be safely said that a kernel of terms is the size increase of Si wafer and the size decrease of semiconductor devices. As the size of Si wafers increases and semiconductor device is miniaturized, the units of cleaning processes increases. A present cleaning technology is based upon RCA cleaning which consumes vast chemicals and ultra pure water (UPW) and is the high temperature process. Therefore, this technology gives rise to the environmental issue. To resolve this matter, candidates of advanced cleaning processes has been studied. One of them is to apply the electrolyzed water. In this work, Compared with surface on Si wafer with electrolyzed water cleaning and various chemicals cleaning, and analyzed Si wafer surface condition treated with elecoolyzed water by cleaning temperature and cleaning time. Especially. concentrate upon the contact angle. finally, contact angle on surface treated with cathode water cleaning is 17.28, and anode water cleaning is 34.1.

  • PDF

A study of dry cleaning for metallic contaminants on a silicon wafer using UV-excited chlorine radical (UV-excited chlorine radical을 이용한 실리콘 웨이퍼상의 금속 오염물의 건식세정에 관한 연구)

  • 손동수;황병철;조동률;김경중;문대원;구경완
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.9-19
    • /
    • 1997
  • The reaction mechanisms of dry cleaning with UV-excited chlorine radical for Zn, Fe and Ti trace contaminants on the Si wafer have been studied by SEM, AFM and XPS analyses in this work. The patterned Zn, Fe and Ti films were deposited on the Si wafer surface by thermal evaporation and changes in the surface morphology after dry cleaning with $Cl_2$and UV/$Cl_2$at $200^{\circ}C$ were studied by optical microscopy and SEM. In addition, changes in the surface roughness of Si wafer with the cleaning was observed by AFM. The chemical bonding states of the Zn, Fe and Ti deposited silicon surface were observed with in-line XPS analysis. Zn and Fe were easily cleaned in the form of volatile zinc-chloride and iron-chloride as verified by the surface morphology changes. Ti which forms involatile oxides was not easily removed at room temperature but was slightly removed by UV/$Cl_2$at elevated temperature of $200^{\circ}C$. It was also found that the surface roughness of the Si wafer increased after $Cl_2$and UV/$Cl_2$cleaning. Therefore, the metallic contaminants on the Si wafer can be easily removed at lower temperature without surface damage by a continuous process using wet cleaning followed by UV/$Cl_2$dry cleaning.

  • PDF

Effect of pH level and slurry particle size on the chemical mechanical planarization of langasite crystal wafer (pH level 및 slurry 입도가 langasite wafer의 chemical mechanical planarization에 미치는 영향)

  • Cho Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2005
  • Effects of pH level and slurry particle size on material removal rate and planarization of langasite single crystal wafer have been examined. Higher material removal rate was obtained with lower pH level slurries while the planarization was found to be determined by average particle size of colloidal silica slurries. Slurries containing 0.045 ㎛ amorphous silica particles showed the best polishing effect without any scratches on the surface. Effective particle number has a strong effect on the surface planarization and the removal rate, so that the lower effective particle numbers produced low removal rate but the better planarization results.