DOI QR코드

DOI QR Code

Development of Cleaning Agents for Solar Silicon Wafer

태양광 실리콘 웨이퍼 세정제 개발

  • Received : 2012.02.07
  • Accepted : 2012.03.05
  • Published : 2012.03.30

Abstract

Cleaning procedure of solar silicon wafer, following ingot sawing process in solar cell production is studied. Types of solar silicon wafer can be divided into monocrystalline or multicrystalline, and slurry sawn wafer or diamond sawn wafer according to the ingot growing methods and the sawing methods, respectively. Wafer surface and contaminants can vary with these methods. The characterisitics of contaminants and wafer surface are investigated for each cleaning substrate, and appropriate cleaning agents are developed. Physical properties and cleaning ability of the cleaning agents are evaluated in order to verify the application in the industry. The wafers cleaned with the cleaning agents do not show any residual contaminants when analyzed by XPS and regular patterns are formed after texturization. Furthermore, the cleaning agents are applied in the production industry, which shows superior cleaning results compared to the existing cleaning agents.

태양전지 제조공정 중 잉곳의 절삭공정 후 진행되는 태양광 실리콘 웨이퍼 세정에 관한 연구를 수행하였다. 태양광 실리콘 웨이퍼는 잉곳의 생산방법에 따라 단결정과 다결정 웨이퍼로 분류되고, 절삭 방법에 따라서는 슬러리로 절삭한 웨이퍼와 다이아몬드 와이어로 절삭한 웨이퍼로 구분할 수 있으며, 이의 방법들에 따라 웨이퍼 표면과 오염원이 달라질 수 있다. 본 연구에서는 세정대상물에 따라 오염원과 웨이퍼 표면의 특성을 관찰하였고 적합한 세정제를 개발하여 물성 및 세정성을 평가하여 적용성을 확인하고자 하였다. 개발된 세정제로 세정한 웨이퍼는 XPS 분석결과 잔류 오염물질이 관찰되지 않았으며, 표면조직화 후 균일한 패턴을 형성함을 확인할 수 있었다. 또한, 개발된 세정제를 웨이퍼 생산현장에서 테스트를 진행하여 기존 세정제보다 우수한 세정결과를 확보하였다.

Keywords

References

  1. Luque, A., and Hegedus S., Handbook of Photovoltaic Science and Engineering, 2nd Ed. Wiley, 2010.
  2. Macdonald, D. H., "Texturing Industrial Multicrystalline Silicon Solar Cells," Solar Energy, 76, 277-283 (2004). https://doi.org/10.1016/j.solener.2003.08.019
  3. Gosalvez, M. A., and Nieminen, R. M. "Surface Morphology During Anisotropic Wet Chemical Etching of Crystalline Silicon," New J. Phys., 5, 100.1-100.28 (2003).
  4. Tanaka, H., Cheng, D., Shikida, M., and Sato, K., "Characterization of Anisotropic Wet Etching Properties of Single Crystal Silicon: Effects of ppb-level of Cu and Pb in KOH Solution," Sensors and Actuators A., 128, 125-131 (2006). https://doi.org/10.1016/j.sna.2006.01.011
  5. Tanaka, H., "Effects of Small Amount of Impurities on Etching of Silicon in Aqueous Potassium Hydroxide Solutions," Sensors and Actuators, 82, 270-273, (2000). https://doi.org/10.1016/S0924-4247(99)00340-4
  6. Munoz. D., "Optimization of KOH Etching Process to Obtain Textured Substrates Suitable for Heterojunction Solar Cells Fabricated by HWCVD," Thin Solid Films, 517, 3578-3580 (2009). https://doi.org/10.1016/j.tsf.2009.01.024
  7. Gale, G. W., and Busnaina, A. A., "Removal of Particulate Contaminants Using Ultrasonics and Megasonics: A Review," J. of Particulate Sci. Technol., 13, 197-211 (1995). https://doi.org/10.1080/02726359508906678
  8. Podolian, A., "The Potential of Sonicated Water in the Cleaning Process of Silicon Wafers," Solar Energy Materials & Solar Cells, 95, 765-772 (2011). https://doi.org/10.1016/j.solmat.2010.10.019
  9. Keswani, M., Raghavan, S., Deymier, P., and Verhaverbeke, S., "Megasonic Cleaning of Wafers in Electrolyte Solutions: Possible Role of Electro-acoustic and Cavitation Effects," Microelectronic Engineering, 86, 132-139 (2009). https://doi.org/10.1016/j.mee.2008.09.042
  10. Kern, W., and Poutinen, D., "Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology," RCA Rev., 31, 187-206 (1970).
  11. Meuris, M., "The IMEC Clean: a New Concept for Particle and Metal Removal on Si Surfaces," Solid State Technol., 109 (1995).
  12. Schmidt, H. F., "$H_{2}O_{2}$ Decomposition and its Impact on Silicon Surface Roughening and Gate Oxide Integrity", Jpn. J. Appl. Phys., 34, 727 (1995). https://doi.org/10.1143/JJAP.34.727
  13. Sparber, W., Schultz, O., and Biro, D., "Comparison of Texturing Methods for Monocrystalline Silicon Solar Cells Using KOH and $Na_{2}CO_{3}$," Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (2003).
  14. Bidiville, A., Wasmer, K., and Kraft, R., "Diamond Wire-sawn Silicon Wafers-from the Lab to the Cell Production," 24th European Photovolatic Solar Energy Conference and Exhibition (2009).
  15. Gogots, Y., Baek, C., and Kirscht, F., "Raman Microspectroscopy Study of Processing-induced Phase Transformations and Residual Stress in Silicon," Semiconductor Sci. Technol., 14, 936-944 (1999). https://doi.org/10.1088/0268-1242/14/10/310
  16. Amer, M. S., Dosser, L., LeClair, S., and Maguire, J. F., "Induced Stress and Structural Changes in Silicon Wafers as a Result of Laser Micro-machining," Appl. Surf. Sci., 187, 291- 296 (2002). https://doi.org/10.1016/S0169-4332(01)01043-1
  17. Martin, A. R., Baeyens, M., Hub, W., Mertens, P. W., and Kolbesen, B. O., "Alkaline Cleaning of Silicon Wafers: Additives for the Prevention of Metal Contamination," Microelec. Eng., 45, 197-208 (1999). https://doi.org/10.1016/S0167-9317(99)00150-1
  18. Tan, B., Li, W., Niu, X., Wang, S., and Liu, Y., "Effect of Surfactant on Removal of Particle Contamination on Si Wafers in ULSI," Trans. Nonferrous Met. Soc. China, 16, 195-198, (2006). https://doi.org/10.1016/S1003-6326(06)60174-X
  19. Gale, G., Busnaina, A., Dai, F., and Kashkoush, I., "How to Accomplish Effective Megasonic Particle Removal," Semicon. Intern., 19, 133-137 (1996).
  20. Shaw, D., "Introduction to Colloid & Surface Chemistry," 4th-Ed. Butterworth Heinemann.
  21. Endo, M., Yoshida, H., and Maeda, Y., "Infrared Monitoring System for the Detection of Contamination on a 300 mm Si Wafer," Appl. Phys. Lett., 75, 519-521 (1999). https://doi.org/10.1063/1.124434
  22. Extrand, C. W., and Kumagai, Y., "An Experimental Study of Contact Angle Hysteresis," J. Colloid and Interface Sci., 191, 378-383 (1997). https://doi.org/10.1006/jcis.1997.4935
  23. Zubel, I., and Kramkowska, M., "Etch Rate and Morphology of Silicon (hkl) Surfaces etched in KOH and KOH Saturated with Isopropanol Solutions," Sensors and Actuators A, 115, 549-556 (2004). https://doi.org/10.1016/j.sna.2003.11.010
  24. Singh, P. K., Kumar, R., Lal, M., Singh, S. N., and Das, B. K., "Effectiveness of Anisotropic Etching of Silicon in Aqueous Alkaline Solutions," Solar Energy Materials & Solar Cells, 70, 103-113 (2001). https://doi.org/10.1016/S0927-0248(00)00414-1
  25. Xi, Z., Yang, D., Dan, W., Jun, C., Li, X., and Que, D., "Investigation of Texturization Formonocrystallline Silicon Solar Cells with Different Kinds of Alkaline," Renewable Energy, 29, 2101-2107 (2004). https://doi.org/10.1016/j.renene.2004.03.003
  26. Kim, K., Dhungel, S. K., Jung, S., Mangalarah, D., and Yi, J., "Texturing of Large Area Multi-crystalline Silicon Wafers through Different Chemical Approaches for Solar Cell Fabrication," Solar Energy Materials & Solar Cells, 92, 960-968 (2008). https://doi.org/10.1016/j.solmat.2008.02.036
  27. González-Diaz, B., Guerrero-Lemus, R., Diaz-Herrera, B., and Marrero, N., "Optimization of Roughness, Reflectance and Photoluminescence for Acid Textured Mc-Si Solar Cells Etched at Different HF/$HNO_{3}$ Concentrations," Materials Sci. and Engineering B, 159-160, 295-298 (2009). https://doi.org/10.1016/j.mseb.2008.11.003
  28. Mouche, L., Tardif, F., and Derrien, J., "Particle Deposition on Silicon Wafer During Wet Cleaning Process," J. of Electrochem. Soc., 141, 1684-1691 (1994). https://doi.org/10.1149/1.2054983
  29. Qin, K., and Li, Y., "Mechanisms of Particle Removal from Silicon Wafer Surface in Wet Chemical Cleaning Process," J. of Colloid and Interface Sci., 261, 569-574 (2003). https://doi.org/10.1016/S0021-9797(03)00053-5

Cited by

  1. A Study on Solar Cell Wafer Cleaning using Ozonate Water vol.50, pp.11, 2013, https://doi.org/10.5573/ieek.2013.50.11.043
  2. A Study on Formulation of Surfactant-free Aqueous Cleaning agents and Evaluation of Their Physical Properties and Cleaning Ability vol.19, pp.3, 2013, https://doi.org/10.7464/ksct.2013.19.3.219