DOI QR코드

DOI QR Code

Thermal Damage Characterization of Silicon Wafer Subjected to CW Laser Beam

CW 레이저 조사에 의한 실리콘 웨이퍼의 손상 평가

  • Received : 2012.02.28
  • Accepted : 2012.07.18
  • Published : 2012.10.01

Abstract

The objective of this study is to evaluate the thermal damage characterization of a silicon wafer subjected to a CW laser beam. The variation in temperature and stress during laser beam irradiation has been predicted using a three-dimensional numerical model. The simulation results indicate that the specimen might crack when a 93-$W/cm^2$ laser beam is irradiated on the silicon wafer, and surface melting can occur when a 186-$W/cm^2$ laser beam is irradiated on the silicon wafer. In experiments, straight cracks in the [110] direction were observed for a laser irradiance exceeding 102 $W/cm^2$. Furthermore, surface melting was observed for a laser irradiance exceeding 140 $W/cm^2$. The irradiance for surface melting is less than that in the simulation results because multiple reflections and absorption of the laser beam might occur on the surface cracks, increasing the absorbance of the laser beam.

본 연구의 목적은 CW 레이저 조사에 의한 실리콘 웨이퍼의 손상을 평가하는 것이다. 먼저, 레이저 조사에 의한 온도 및 응력 변화를 3 차원 유한요소해석 모델을 이용하여 예측하였다. 해석 결과, 93 $W/cm^2$의 레이저 빔이 조사되었을 때, 실리콘 웨이퍼의 표면의 응력은 약 140 MPa 까지 증가하였으며 균열이 발생할 것으로 예측되었다. 레이저 강도가 더욱 증가하여 186 $W/cm^2$ 일 때에는 실리콘 웨이퍼의 표면의 온도는 $1432^{\circ}C$까지 증가하였으며 표면부가 용융될 것으로 예상되었다. 실험 결과, 102 $W/cm^2$ 의 레이저 빔이 실리콘 웨이퍼 표면에 조사되었을 때 표면부에 균열이 발생하였고, 레이저 빔의 강도가 더욱 증가하여 140 $W/cm^2$ 일때 표면부에서 용융이 발생하였다. 용융이 발생하는 레이저 빔의 강도는 유한요소해석 결과보다 낮은 값이었으며 이는 표면부에서 생성된 균열에 의해 레이저 빔의 다중반사와 다중흡수가 일어나 레이저 빔의 흡수량이 증가하였기 때문이다.

Keywords

References

  1. Kalisky, Y. and Kalisky, O., 2011, "Applications and Performance of High Power Lasers and in the Battlefield," Optical Materials, Vol. 34, pp. 457-460. https://doi.org/10.1016/j.optmat.2011.04.005
  2. Lee, H. H., Gwak, M. C., Choi, J. H. and Yoh, J. I., 2008, "High Power Laser Driven Shock Compression of Metals and Its Innovative Applications," Trans. of the KSME (B), Vol. 32, No. 11, pp. 832-840. https://doi.org/10.3795/KSME-B.2008.32.11.832
  3. Wang, X., Shen, Z. H., Lu, J. and Ni, X. W., 2010, "Laser-induced Damage Threshold of Silicon in Millisecond, Nanosecond, and Picosecond Regimes," Journal of the Applied Physics, Vol. 108, pp. 033103. https://doi.org/10.1063/1.3466996
  4. Rogalski, A., 2010, Infrared Detectors, 2nd edition, CRC Press, Boca Raton.
  5. Arora, V. K. and Dawar, A. L., 1996, "Laser-induced Damage Studies in Silicon and Silicon-based Photodetectors," Applied Optics, Vol. 35, No. 36, pp. 7061-7065. https://doi.org/10.1364/AO.35.007061
  6. Wang, X., Qin, Y., Wang, B., Zhang, L., Shen, Z., Lu, J. and Ni, X., 2011, "Numerical and Experimental Study of the Thermal Stress of Silicon Induced by a Millisecond Laser," Applied Optics, Vol. 50, No. 21, pp. 3725-3732. https://doi.org/10.1364/AO.50.003725
  7. Gross, T. S., Hening, S. D. and Watt, D. W., 1991, "Crack Formation During Laser Cutting of Silicon," Journal of Applied Physics, Vol. 69, No. 2, pp. 983-989. https://doi.org/10.1063/1.347291
  8. Li, D. H., Zheng, X. J., Wu, B. and Zhou, Y. C., 2009, "Fracture Analysis of a Surface Through-Thickness Crack in PZT Thin Film under a Continuous Laser Irradiation," Engineering Fracture Mechanics, Vol. 76, pp. 525-532. https://doi.org/10.1016/j.engfracmech.2008.11.009
  9. Murr, L. E. and Szilva, W. A., 1975, "Laser-Induced Fracture in Silicon," Journal of Materials Science, Vol. 10, pp. 1536-1548. https://doi.org/10.1007/BF01031854
  10. Conde, J. C., Martín, E., Gontad, F., Chiussi, S., Fornarini, L. and León, B., 2010, "Numerical Analysis of Temperature Profile and Thermal-Stress During Excimer Laser Induced Heteroepitaxial Growth of Patterned Amorphous Silicon and Germanium Bilayers Deposited on Si(100)," Thin Solid Films, Vol. 518, pp. 2431-2436. https://doi.org/10.1016/j.tsf.2009.09.135
  11. Zorba, V., Boukos, N., Zergioti, I. and Fotakis, C., 2008, "Ultraviolet Femtosecond, Picosecond and Nanosecond Laser Microstructuring of Silicon: Structural and Optical Properties," Applied Optics, Vol. 47, No. 11, pp. 1846-1850. https://doi.org/10.1364/AO.47.001846
  12. Karnakis, D. M., 2006, "High Power Single-shot Laser Ablation of Silicon with Nanosecond 355 nm," Applied Surface Science, Vol. 252, pp. 7823-7825. https://doi.org/10.1016/j.apsusc.2005.09.040
  13. Said-Bacar, Z., Leroy, Y., Antoni, F., Slaoui, A. and Fogarassy, E., 2011, "Modeling of CW Laser Diode Irradiation of Amorphous Silicon Films," Applied Surface Science, Vol. 257, pp. 5127-5131. https://doi.org/10.1016/j.apsusc.2010.11.025
  14. Yan, J., Sakai, S., Isogai, H. and Izunome, K., 2009, "Recovery of Microstructure and Surface Topography of Grinding-Damaged Silicon Wafers by Nanosecond- Pulsed Laser Irradiation," Semiconductor Science and Technology, Vol. 24, pp. 105018. https://doi.org/10.1088/0268-1242/24/10/105018
  15. Fu, Z., Wu, B., Gao, Y., Zhou, Y. and Yu, C., 2010, "Experimental Study of Infrared Nanosecond Laser Ablation of Silicon: The Multi-pulse Enhancement Effect," Applied Surface Science, Vol. 256, pp. 2092-2096. https://doi.org/10.1016/j.apsusc.2009.09.053
  16. Jellison, G. E. and Lowndes, D. H., 1982, "Optical Absorption Coefficient of Silicon at 1.152 at Elevated Temperatures," Applied Physics Letters, Vol. 41, pp. 594-596. https://doi.org/10.1063/1.93621
  17. Fu, C. J. and Zhang, Z. M., 2006, "Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels," Journal of Heat and Mass Transfer, Vol. 49, pp. 1703-1718. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.037
  18. Bass, M., Decusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V. and Stryland, E. V., 2011, Handbook of Optics, 3rd Edition Volume IV, McGraw-Hill, New York.
  19. Hull, R., 1999, Properties of Crystalline Silicon, INSPEC, London.
  20. Ravindra, N. M., Sopori, B., Gokce, O. H., Cheng, S. X., Shenoy, A., Jin, L., Abedrabbo, S., Chen, W. and Zhang, Y., 2001, "Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview," Journal of Thermophysics, Vol. 22, No. 5, pp. 1593-1611. https://doi.org/10.1023/A:1012869710173
  21. Kim, K. W., Lee, J. H., Suh, J. and Cho, H. Y., 2007, "Finite Element Analysis for Prediction of Band Shape of Nd:YAG Laser Fillet Welding," Trans. of the KSME (A), Vol. 31, No. 8, pp. 839-846.
  22. Cook, R. F., 2006, "Strength and Sharp Contact Fracture of Silicon," Journal of Material Science, Vol. 41, pp. 841-872. https://doi.org/10.1007/s10853-006-6567-y
  23. eong, S. M., Park, S. E., Oh, H. S. and Lee, H. L., 2004, "Evaluation of Damage on Silicon Wafers using the Angle Lapping Method and a Biaxial Fracture Strength Test," Journal of Ceramic Processing Research, Vol. 5, No. 5, pp. 171-174.
  24. Choi, S. H., Kim, C. S., Jhang, K. Y. and Shin, W. S., 2011, "Influence of Surface Roughness on Morphology of Aluminum Alloy After Pulsed-Laser Irradiation," Trans. of the KSME (A), Vol. 35, No. 9, pp. 1105-1111. https://doi.org/10.3795/KSME-A.2011.35.9.1105

Cited by

  1. High-Power Continuous-Wave Laser-Induced Damage to Complementary Metal-Oxide Semiconductor Image Sensor vol.39, pp.1, 2015, https://doi.org/10.3795/KSME-A.2015.39.1.105