• Title/Summary/Keyword: WSix poly gate

Search Result 7, Processing Time 0.025 seconds

EPD time delay in etching of stack down WSix gate in DPS+ poly chamber

  • Ko, Yong Deuk;Chun, Hui-Gon
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.130-136
    • /
    • 2002
  • Device makers want to make higher density chips as devices shrink, especially WSix poly stack down is one of the key issues. However, EPD (End Point Detection) time delay was happened in DPS+ poly chamber which is a barrier to achieve device shrink because EPD time delay killed test pattern and next generation device. To investigate the EPD time delay, a test was done with patterned wafers. This experimental was carried out combined with OES(Optical Emission Spectroscopy) and SEM (Scanning Electron Microscopy). OES was used to find corrected wavelength in WSix stack down gate etching. SEM was used to confirm WSix gate profile and gate oxide damage. Through the experiment, a new wavelength (252nm) line of plasma is selected for DPS+ chamber to call correct EPD in WSix stack down gate etching for current device and next generation device.

  • PDF

A Study for Stable End Point Detection in 90 nm WSix/poly-Si Stack-down Gate Etching Process (90 nm급 텅스텐 폴리사이드 게이트 식각공정에서 식각종말점의 안정화에 관한 연구)

  • Ko, Yong-Deuk;Chun, Hui-Gon;Lee, Jing-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • The device makers want to make higher density chips on the wafer through scale-down. The change of WSix/poly-Si gate film thickness is one of the key issues under 100 nm device structure. As a new device etching process is applied, end point detection(EPD) time delay was occurred in DPS+ poly chamber of Applied Materials. This is a barrier of device shrink because EPD time delay made physical damage on the surface of gate oxide. To investigate the EPD time delay, the experimental test combined with OES(Optical Emission Spectroscopy) and SEM(Scanning Electron Microscopy) was performed using patterned wafers. As a result, a EPD delay time is reduced by a new chamber seasoning and a new wavelength line through plasma scan. Applying a new wavelength of 252 nm makes it successful to call corrected EPD in WSix/poly-Si stack-down gate etching in the DPS+ poly chamber for the current and next generation devices.

Fluorine Effects on CMOS Transistors in WSix-Dual Poly Gate Structure (텅스텐 실리사이드 듀얼 폴리게이트 구조에서 CMOS 트랜지스터에 미치는 플로린 효과)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Kang-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.177-184
    • /
    • 2014
  • In chemical vapor deposition(CVD) tungsten silicide(WSix) dual poly gate(DPG) scheme, we observed the fluorine effects on gate oxide using the electrical and physical measurements. It is found that in fluorine-rich WSix NMOS transistors, the gate thickness decreases as gate length is reduced, and it intensifies the roll-off properties of transistor. This is because the fluorine diffuses laterally from WSix to the gate sidewall oxide in addition to its vertical diffusion to the gate oxide during gate re-oxidation process. When the channel length is very small, the gate oxide thickness is further reduced due to a relative increase of the lateral diffusion than the vertical diffusion. In PMOS transistors, it is observed that boron of background dopoing in $p^+$ poly retards fluorine diffusion into the gate oxide. Thus, it is suppressed the fluorine effects on gate oxide thickness with the channel length dependency.

A Study on Solving the WSix Peeling Issue at MDDR DRAM (MDDR(Mobile Double Data Rate) DRAM의 WSix Peeling 불량 해결 연구)

  • Chae, Han-Yong;Lee, Sung-Young;Park, Tae-Hoon;Lee, Hyun-Sung;Lee, Kwang-Hee;Seo, Ju-Won;Choi, Kyue-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.481-482
    • /
    • 2008
  • In this paper, the advanced process has been presented to remove the WSix peeling that was made in sub 100nm DRAM SRCAT(Sphere-shaped-Recess-Ch annel-Array Transistor). The source of WSix peeling was proved to be the groove of gate poly film. We have completely solved the problems to adopt the gate-poly CMP (Chemical Mechanical Polishing) process.

  • PDF

Fluorine Effects on NMOS Characteristics and DRAM Refresh

  • Choi, Deuk-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2012
  • We observed that in chemical vapor deposition (CVD) tungsten silicide (WSix) poly gate scheme, the gate oxide thickness decreases as gate length is reduced, and it intensifies the roll-off properties of transistor. This is because the fluorine diffuses laterally from WSix to the gate sidewall oxide in addition to its vertical diffusion to the gate oxide during gate re-oxidation process. When the channel length is very small, the gate oxide thickness is further reduced due to a relative increase of the lateral diffusion than the vertical diffusion. In DRAM cells where the channel length is extremely small, we found the thinned gate oxide is a main cause of poor retention time.

Breakdown Characteristics of Gate Oxide with W-Silicide Deposition Methodes of W-polycide Gate Structures (W-polycide 게이트 구조에서 텅스텐 실리사이드 증착 방법에 따른 게이트 산화막의 내압 특성)

  • 정회환;정관수
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.301-305
    • /
    • 1995
  • 습식 분위기로 성장한 게이트 산화막 위에 다결정 실리콘(poly-Si)과 텅스텐 폴리사이드(WSix/poly-Si)게이트 전극을 형성하여 제작한 금속-산화물-반도체(metal-oxide-semiconductor:MOS)의 전기적 특성을 순간 절연파괴(time zero dielectric breakdown: TZDB)로 평가하였다. 텅스텐 폴리사이드 게이트 전극에 따른 게이트 산화막의 평균 파괴정계는 다결정 실리콘 전극보다 1.93MV/cm 정도 낮았다. 텅스텐 폴리사이드 게이트 전극에서 게이트 산화막의 B model(1-8 MV/cm)불량률은 dry O2 분위기에서 열처리함으로써 증가하였다. 이것은 열처리함으로써 게이트 전극이 silane(SiH4)에 의한 것보다 B mode 불량률이 감소하였다. 그것은 dichlorosilane 환원에 의한 텅스텐 실리사이드내의 불소 농도가 silane에 의한 것보다 낮기 때문이다.

  • PDF

The Effect of $N_2O$ treatment and Cap Oxide in the PECVD $SiO_xN_y$ Process for Anti-reflective Coating (ARC를 위한 PECVD $SiO_xN_y$ 공정에서 $N_2O$ 처리 및 cap 산화막의 영향)

  • Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chung, Hun-Sang;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.39-42
    • /
    • 2000
  • As gate dimensions continue to shrink below $0.2{\mu}m$, improving CD (Critical Dimension) control has become a major challenge during CMOS process development. Anti-Reflective Coatings are widely used to overcome high substrate reflectivity at Deep UV wavelengths by canceling out these reflections. In this study, we have investigated Batchtype system for PECVO SiOxNy as Anti-Reflective Coatings. The Singletype system was baseline and Batchtype system was new process. The test structure of Singletype is SiON $250{\AA}$ + Cap Oxide $50{\AA}$ and Batchtype is SiON $250{\AA}$ + Cap Oxide $50{\AA}$ or N2O plasma treatment. Inorganic chemical vapor deposition SiOxNy layer has been qualified for bottom ARC on Poly+WSix layer, But, this test was practiced on the actual device structure of TiN/Al-Cu/TiN/Ti stacks. A former day, in Batchtype chamber thin oxide thickness control was difficult. In this test, Batchtype system is consist of six deposition station, and demanded 6th station plasma treatment kits for N2O treatment or Cap Oxide after SiON $250{\AA}$. Good reflectivity can be obtained by Cap Oxide rather than N2O plasma treatment and both system of PECVD SiOxNy ARC have good electrical properties.

  • PDF