• Title/Summary/Keyword: Vulnerability Quantification

Search Result 21, Processing Time 0.022 seconds

Modifier parameters and quantifications for seismic vulnerability assessment of reinforced concrete buildings

  • Oumedour, Amira;Lazzali, Farah
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2022
  • In recent years, some studies have identified and quantified factors that can increase or decrease the seismic vulnerability of buildings. These modifier factors, related to the building characteristics and condition, are taken into account in the vulnerability assessment, by means of a numerical estimation resulting from the quantification of these modifiers through vulnerability indexes. However, views have differed on the definition and the quantification of modifiers. In this study, modifier parameters and scores of the Risk-UE Level 1 method are adjusted based on the Algerian seismic code recommendations and the reviews proposed in the literature. The adjusted modifiers and scores are applied to reinforced concrete (RC) buildings in Boumerdes city, in order to assess probable seismic damage. Comparison between estimated damage and observed damage caused by the 2003 Boumerdes earthquake is done, with the objective to (i) validate the model involving influence of the modifier parameters on the seismic vulnerability, and (ii) to define the relationship between modifiers and damage. This research may help planners in improving seismic regulations and reducing vulnerability of existing buildings.

Game Theory-Based Vulnerability Quantification Method Using Attack Tree (Attack Tree를 활용한 Game Theory 기반 보안 취약점 정량화 기법)

  • Lee, Seokcheol;Lee, Sang-Ha;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.259-266
    • /
    • 2017
  • In modern society, IT technology based systems are introduced and operated in various fields such as home, industry, and finance. To ensure the safety of society, IT systems introduced throughout society should be protected from cyber attacks. Understanding and checking the current security status of the system is one of the important tasks to response effectively against cyber attacks. In this paper, we analyze limitations of Game Theory and Attack Tree methodologies used to inspect for security vulnerabilities. Based on this, we propose a security vulnerability quantification method that complements the limitations of both methodologies. This provides a more objective and systematic way to inspect for security weaknesses.

A Basic Study on the Safety Management and Quantification of Vulnerability Factors in Small-size Old Buildings (소규모 노후 건축물 안전관리 및 취약성 요소 정량화 기본연구)

  • Goh, Wolsan;Oh, Gyuho;Ahn, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.249-250
    • /
    • 2023
  • The vulnerability factor analysis and risk quantification model for aging buildings presented in this study can be utilized by governmental agencies such as the Facility Safety Foundation, the Ministry of Land, Infrastructure and Transport, and various local governments. Policymakers can use this to supplement inadequacies in existing checklists, and it is expected that they can proactively prevent risks by evaluating dangers based on specific aging characteristics of buildings.

  • PDF

Quantification of Climate Change Vulnerability Index for Extreme Weather - Focused on Typhoon case - (기후변화에 따른 극한기상의 취약성 지수 정량화 연구 - 태풍을 중심으로 -)

  • Kim, Cheol-Hee;Nam, Ki-Pyo;Lee, Jong-Jae
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.190-203
    • /
    • 2015
  • VRI(Vulnerability-Resilience Index), which is defined as a function of 3 variables: climate exposure, sensitivity, and adaptive capacity, has been quantified for the case of Typhoon which is one of the extreme weathers that will become more serious as climate change proceeds. Because VRI is only indicating the relative importance of vulnerability between regions, the VRI quantification is prerequisite for the effective adaptation policy for climate in Korea. For this purpose, damage statistics such as amount of damage, occurrence frequency, and major damaged districts caused by Typhoon over the past 20 years, has been employed. According to the VRI definition, we first calculated VRI over every district in the case of both with and without weighting factors of climate exposure proxy variables. For the quantitative estimation of weighting factors, we calculated correlation coefficients (R) for each of the proxy variables against damage statistics of Typhoon, and then used R as weighting factors of proxy variables. The results without applying weighting factors indicates some biases between VRI and damage statistics in some regions, but most of biases has been improved by applying weighting factors. Finally, due to the relations between VRI and damage statistics, we are able to quantify VRI expressed as a unit of KRW, showing that VRI=1 is approximately corresponding to 500 hundred million KRW. This methodology of VRI quantification employed in this study, can be also practically applied to the number of future climate scenario studies over Korea.

Windborne debris risk analysis - Part II. Application to structural vulnerability modeling

  • Lin, Ning;Vanmarcke, Erik;Yau, Siu-Chung
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.207-220
    • /
    • 2010
  • The 'chain reaction' effect of the interaction between wind pressure and windborne debris is likely to be a major cause of damage to residential buildings during severe wind events. The current paper (Part II) concerns the quantification of such pressure-debris interaction in an advanced vulnerability model that integrates the debris risk model developed in Part I and a component-based wind-pressure damage model. This vulnerability model may be applied to predict the cumulative wind damage during the passage of particular hurricanes, to estimate annual hurricane losses, or to conduct system reliability analysis for residential developments, with the effect of windborne debris fully considered.

A quantitative assessment method of network information security vulnerability detection risk based on the meta feature system of network security data

  • Lin, Weiwei;Yang, Chaofan;Zhang, Zeqing;Xue, Xingsi;Haga, Reiko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4531-4544
    • /
    • 2021
  • Because the traditional network information security vulnerability risk assessment method does not set the weight, it is easy for security personnel to fail to evaluate the value of information security vulnerability risk according to the calculation value of network centrality, resulting in poor evaluation effect. Therefore, based on the network security data element feature system, this study designed a quantitative assessment method of network information security vulnerability detection risk under single transmission state. In the case of single transmission state, the multi-dimensional analysis of network information security vulnerability is carried out by using the analysis model. On this basis, the weight is set, and the intrinsic attribute value of information security vulnerability is quantified by using the qualitative method. In order to comprehensively evaluate information security vulnerability, the efficacy coefficient method is used to transform information security vulnerability associated risk, and the information security vulnerability risk value is obtained, so as to realize the quantitative evaluation of network information security vulnerability detection under single transmission state. The calculated values of network centrality of the traditional method and the proposed method are tested respectively, and the evaluation of the two methods is evaluated according to the calculated results. The experimental results show that the proposed method can be used to calculate the network centrality value in the complex information security vulnerability space network, and the output evaluation result has a high signal-to-noise ratio, and the evaluation effect is obviously better than the traditional method.

Advanced Seismic Retrofit Priority Decision For Seismic Performance Estimation of Existing Bridges (기존 교량의 내진성능평가를 위한 개선된 내진보강 우선순위 결정)

  • Park, Kwang-Soon;Ju, Hyeong-Seok;Choi, Hong-Cheol;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.47-57
    • /
    • 2009
  • Existing bridges are classified into 4 retrofit groups using the current preliminary screening method, considering key terms such as seismicity, vulnerability and social impact effect. However, some irrationality was found when the current method was applied to 442 existing bridges. As a result, it was determined that quantification and a more detailed classification of seismicity were required. The estimation of the vulnerability of box girder bridges having a long span length should be improved, as this showed a tendency to underestimate. It was also necessary to increase the level of social impact effect to that of vulnerability. In this study, an improved preliminary screening method has been proposed on the basis of the estimation results of existing bridges.

Vulnerability Assessment of Human Health Sector due to Climate Change: Focus on Ozone (기후변화에 따른 보건 분야의 취약성 평가: O3을 중심으로)

  • Lee, Jae-Bum;Lee, Hyun-Ju;Moon, Kyung-Jung;Hong, Sung-Chul;Kim, Deok-Rae;Song, Chang-Keun;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.22-38
    • /
    • 2012
  • Adaptation of climate change is necessary to avoid unexpected impacts of climate change caused by human activities. Vulnerability refers to the degree to which system cannot cope with impacts of climate change, encompassing physical, social and economic aspects. Therefore the quantification of climate change impacts and its vulnerability is needed to identify vulnerable regions and to setup the proper strategies for adaptation. In this study, climate change vulnerability is defined as a function of climate exposure, sensitivity, and adaptive capacity. Also, we identified regions vulnerable to ozone due to climate change in Korea using developed proxy variables of vulnerability of regional level. 18 proxy variables are selected through delphi survey to assess vulnerability over human health sector for ozone concentration change due to climate change. Also, we estimate the weighting score of proxy variables from delphi survey. The results showed that the local regions with higher vulnerability index in the sector of human health are Seoul and Daegu, whereas regions with lower one are Jeollanam-do, Gyeonggi-do, Gwangju, Busan, Daejeon, and Gangwon-do. The regions of high level vulnerability are mainly caused by their high ozone exposure. We also assessed future vulnerability according to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1FI, A1T, A1B, B2, and B1 scenarios in 2020s, 2050s and 2100s. The results showed that vulnerability increased in all scenarios due to increased ozone concentrations. Especially vulnerability index is increased by approximately 2 times in A1FI scenarios in the 2020s. This study could support regionally adjusted adaptation polices and the quantitative background of policy priority as providing the information on the regional vulnerability of ozone due to climate change in Korea.

A Study on Quantitative Security Assessment after Privacy Vulnerability Analysis of PC (PC의 개인정보보호 취약점 분석과 정량화된 보안진단 연구)

  • Seo, Mi-Sook;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.456-460
    • /
    • 2012
  • Privacy Protection Act of 30 March 2012 was performed. In general, personal information management to enhance security in the DB server has a security system but, PC for the protection of the privacy and security vulnerability analysis is needed to research on self-diagnosis. In this paper, from a PC to search information relating to privacy and enhance security by encrypting and for delete file delete recovery impossible. In pc found vulnerability analysis is Check user accounts, Checking shared folders ,Services firewall check, Screen savers, Automatic patch update Is checked. After the analysis and quantification of the vulnerability checks through the expression, enhanced security by creating a checklist for the show, PC security management, server management by semi-hwahayeo activates. In this paper the PC privacy and PC security enhancements a economic damage and of the and Will contribute to reduce complaints.

  • PDF

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.