• 제목/요약/키워드: Volume-of-fluid

검색결과 1,412건 처리시간 0.026초

체액량 부족(Fluid volume deficit) ; 간호진단의 타당도 조사 연구 (Validity of nursing diagnosis : Fluid volume deficit)

  • 변영순;김숙영
    • 기본간호학회지
    • /
    • 제1권2호
    • /
    • pp.207-218
    • /
    • 1994
  • A validation of the nursing diagnosis 'fluid volume deficit' was completed by using the diagnostic content validity method. Articles pertaining to fluid volume depletion were reviewed to identify the signs and symptoms used to describe the nursing diagnosis. The topics addressed in the articles included hypovolemic shock, hemorrhage, trauma, fluid balance, hydration, burn injury, thirst, dehydration. A validation instruments was constructed of 52 signs and symptoms. A validation tool was examined by expert nurses group who work on intensive care unit, kidney transplantation unit, internal medicine and general surgery unit. The study sample rated the signs and symptoms on a scale from one to five, evaluating their relevance to this diagnosis. Of the 52 signs and symptoms on the validation tool, 10 were categorized as critical indicators and 34 were categorized as defining characteristics.

  • PDF

선체주위 자유수면 유동 해석을 위한 VOF법 연구 (A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS)

  • 박일룡
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

Effect of Changing Amniotic Fluid Osmolarity on the $Li^+$ Transport Through the Membrane Surrounding Amniotic Fluid in the Rabbit

  • Chang, Jin-Keun;Lee, Sang-Jin;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • 제27권1호
    • /
    • pp.13-25
    • /
    • 1993
  • To study the regulation of amniotic fluid volume and electrolyte concentration by the Membranes surrounding the amniotic fluid, the rate of $Li^+$ disappearance from amniotic sac of expired fetuses were examined while increasing the amniotic volume and osmolarity in rabbits. After intraamniotic injection of 1 ml isosmotic saline (about 20% of the amniotic fluid volume) containing 15 mM LiCl and 0.5 g/L Censored, the time courses of $Li^+$ and Censored disappearance were determined. From there the $Li^+$ clearance through the extrafetal routes was estimated and compared with that obtained from living fetuses. The volume, $Na^+$ concentration and osmolarity of amniotic fluid were measured and their relationships with $Li^+$ disappearance were evaluated. The fellowing results were obtained: 1. The rate of disappearance from amniotic fluid of living fetuses during the first 30 minutes was strikingly higher for $Li^+$ than for Censored, suggesting that extrafetal routes exist. At 60 and 90 minutes, however, the disappearance rate of $Li^+$ was less than that of Censored, suggesting the possibility of $Li^+$ reentry through fetal urination. 2. The disappearance of $Li^+$ from the amniotic fluid of the expired fetus was substantial, although lower than that of living fetuses, throughout the experimental period. 3. The $Na^+$ concentration and the osmolarity of the amniotic fluid of expired fetus measured 30 minutes after an intraamniotic injection of isoosmotic saline showed wide variation, but thereafter they changed gradually towards the normal extracellular fluid level. 4. When the amniotic fluid was iso- or hyposmolar, the rate of $Li^+$ disappearance from the amniotic fluid of the expired fetuses showed little variation. However, when the amniotic fluid was hyperosmolar, the rate at 30 minutes was markedly lower than those of isosmotic or hyposmotic amniotic fluid. At 90 minutes, the rate of $Li^+$ disappearance in hyperosmolar fluid reached a similar level to the rate in isosmolar fluid. 5. The intraamniotic injection of 400 mOsm/L saline solution decreased the disappearance rate of $Li^+$ from expired fetuses, while the injection of mannitol into the maternal vein induced no significant change. From these results it is concluded that: 1) a significant amount of $Li^+$ may leave the amniotic fluid via filtration through the membranes surrounding the amniotic fluid, 2) during hyperosmolar challenge to amniotic fluid, osmotic bulk flow might counteract the filterable loss, and 3) $Li^+$ disappearance might continue even after the volume and osmolarity of the amniotic fluid have recovered to control values.

  • PDF

내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준) (Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume))

  • 강형석
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

비정상 다상유동의 효율적 수치모사를 위한 VOF가 적용된 Fractional Step 기법 (FRACTIONAL STEP METHOD COMBINED WITH VOLUME-OF-FLUID METHOD FOR EFFICIENT SIMULATION OF UNSTEADY MULTIPHASE FLOW)

  • 이경준;양경수;강창우
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.99-108
    • /
    • 2010
  • Fractional Step Methods(FSM) are popular in simulation of unsteady incompressible flow. In this study, we demonstrate that FSM, combined with a Volume-Of-Fluid method, can be further applied to simulation of multiphase flow. The interface between the fluids is constructed by the effective least squares volume-of-fluid interface reconstruction algorithm and advected by the velocity using the operator split advection algorithm. To verify our numerical methodology, our results are compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. The present FSM sheds light on accurate simulation of turbulent multiphase flow which is found in many engineering applications.

Classical shell theory for instability analysis of concrete pipes conveying nanofluid

  • Keikha, Reza;Heidari, Ali;Hosseinabadi, Hamidreza;Haghighi, Mohammad Salkhordeh
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.161-166
    • /
    • 2018
  • This paper deals with the instability analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The fluid is mixed by $AL_2O_3$ nanoparticles where the effective material properties of fluid are obtained by mixture rule. The applied force by the internal fluid is calculated by Navier-Stokes equation. The structure is simulated by classical cylindrical shell theory and using energy method and Hamilton's principle, the motion equations are derived. Based on Navier method, the critical fluid velocity of the structure is calculated and the effects of different parameters such as fluid velocity, volume percent of nanoparticle in fluid and geometrical parameters of the pipe are considered. The results present that with increasing the volume percent of nanoparticle in fluid, the critical fluid velocity increase.

FLUID-GRANULE MIXED FLOIW DOWNSTREAM OF SCOUR HOLE AT OUTLET OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Shim, Myung-Pil;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • 제3권3호
    • /
    • pp.155-162
    • /
    • 2002
  • This study presents the theoretical approach for volume concentration, velocity profile, and granular discharge on the fluid-granule mixed flow downstream of the scour hole at the outlet of the hydraulic structure. Concept of dilatant model was applied for the stress-strain relationships of fluid-granule mixed flow since the flow downstream of the scour hole corresponds to debris flow, where momentum transfers through particle collisions. Mathematical formulations were derived using momentum equation and stress-strain relation of the fluid-granule mixture. Velocity profile under the assumption of uniform concentration over flowing layer showed the downward convex type. Deposition angle of downstream hump was found to be a function of an upstream slope angle, a dynamic friction angle and a volume concentration irrespective of flow itself, Granular discharge and the overflow depth were obtained with given values of inflow rates. Experimental results showed relatively good agreements with theoretical ones.

  • PDF

공학적 관점에서의 다상유동 문제의 수치해석 (Simulation of industrial multiphase flows)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF

Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.325-331
    • /
    • 2017
  • In this study, vibration and stability of concrete pipes reinforced with carbon nanotubes (CNTs) conveying fluid are presented. Due to the existence of CNTs, the structure is subjected to magnetic field. The radial fore induced with fluid is calculated using Navier-Stokes equations. Characteristics of the equivalent composite are determined using Mori-Tanaka model. The concrete pipe is simulated with classical cylindrical shell model. Employing energy method and Hamilton's principal, the motion equations are derived. Frequency and critical fluid velocity of structure are obtained analytically based on Navier method for simply supported boundary conditions at both ends of the pipe. The effects of fluid, volume percent of CNTs, magnetic field and geometrical parameters are shown on the frequency and critical fluid velocity of system. Results show that with increasing volume percent of CNTs, the frequency and critical fluid velocity of concrete pipe are increased.

비정렬 격자 유한체적법을 이용한 삼차원 자유표면 유동 해석 코드의 개발 (Development of a Solver for 3-D Flows with Free Surface using the Finite Volume Method on Unstructured Grids)

  • 임중혁;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.910-915
    • /
    • 2003
  • A Navier-Stokes equation solver for incompressible viscous flows with free surface is developed and tested. This is based upon a fractional time step method and a non-staggered finite volume formulation for unstructured meshes. For time advancement scheme, Adams -Bashforth method for convective term and Crank-Nicolson method for diffusive term are applied. The interface between two fluids with different fluid properties is tracked with Piecewise Linear Interface Calculation(PLIC) Volume-of-Fluid(VOF) methods. Computational results are presented for some test problems: the broken dam, the sloshing in a rectangular tank, the filling of a cylindrical tank.

  • PDF