• Title/Summary/Keyword: Volume Of Fluids(VOF)

Search Result 56, Processing Time 0.018 seconds

TRANSIENT SIMULATION OF SUBCOOLED ONSET OF NUCLEATE BOILING IN A MICRO-CHANNEL (마이크로채널에서 과냉 핵비등 시발점의 비정상 수치해석)

  • Lee, H.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2011
  • A numerical study of subcooled onset of nucleate boiling (ONB) in a micro-channel under pulsed heating using volume of fluids (VOF) model was conducted. The VOF simulation adopting the existing experimental condition is compared to the experimental data. The time to ONB was determined when the void fraction at the microheater surface first appeared. The theoretical superheat for homogeneous nucleation relatively predicts the transient ONB results of convective flow of water well based on local temperature distribution. It was found that once heat load increases at the heater, transient flow boiling starts to occur faster.

Numerical analysis of submerged jet by VOF method (VOF법을 이용한 수중 제트의 수치해석)

  • Park G. H.;Kim H. J.;Kwon S. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.178-182
    • /
    • 2004
  • Numerical analysis of a gaseous jet submerged in a liquid environment was carried out using the volume of fluid(VOF) method to simulate the kinematics of the gas-liquid interface. Two nozzle geometries were tested, one for Fanno tube and the other for converging diverging nozzle. Commercial code was used for the present calculation. Transient behavior of a gaseous jet since its start showed periodic nature of the jet, which was also observed in previous measurements.

  • PDF

NUMERICAL SIMULATION OF TSUNAMI WITH VOF METHOD BASED ON FVM (FVM에 기초한 VOF법에 의한 쓰나미 수치해석)

  • Myong, Hyon Kook;Park, Jin Woo
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2014
  • Recently, coastal structures have been built to protect coastal areas. However, if a tidal wave caused by an earthquake hits the coast, it would cause catastrophic damages. It is important to analyze the basics and the characteristics of a tsunami to reduce damages caused by natural disasters. In this study, a tsunami passing over different topographical changes is simulated with VOF method based on FVM(Finite Volume Method). The reduction of both scale and velocity is accomplished by similarity analysis, and an initial energy is generated by increasing the water level as needed to create a tsunami as if it is caused by a crustal movement. It is found that the present method is appropriate to simulate the tsunami with its mechanism.

A Study on a VOF Method for Improved Free Surface Capturing (VOF법의 자유수면 포착정도 향상을 위한 연구)

  • Park Il-Ryong;Kim Wu-Joan;Kim Jin;Van Suak-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.202-206
    • /
    • 2005
  • A new numerical scheme for two-phase flows, the Hybrid VOF method has been developed for improved free surface capturing. The present new method is a volume capturing based VOF method coupled with a reinitialization procedure of a Level-set method. For validation, the proposed method is applied to two test cases: spherical bubble rising and dam breaking. The calculated results by using the Hybrid VOF method with the two previously applied VOF formulations are compared with available numerical and experimental data. It is found that the new method provides more accurate results than the two previous ones.

  • PDF

A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS (선체주위 자유수면 유동 해석을 위한 VOF법 연구)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

A Study on the Flow with Interfacial Phenomena Using VOF Method

  • Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.9-10
    • /
    • 2006
  • A numerical method for simulating tree surface flows including the surface tension is presented. Numerical scheme is based an a fractional-step method with a finite volume formulation and the interface between liquid and gas is tracked by Volume of Fluid (VOF) method. Piecewise Linear Interface Calculation (PLIC) method is used to reconstruct the interface and the surface tension is considered using a Continuum Surface Force (CSF) model. Several free surface flow phenomena were simulated to show its effectiveness to find such phenomena.

  • PDF

CAVITATION ANALYSIS IN A CENTRIFUGAL PUMP USING VOF METHOD (VOF기법을 이용한 원심펌프 내의 공동현상에 관한 유동해석)

  • Lee, W.J.;Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Centrifugal pumps consume considerable amount of energy in various industrial applications. Therefore, improvement of the efficiency of these machines has become a major challenge. Cavitation is a phenomenon which decreases the pump efficiency and even causes structural demage. Hence, the goal of this paper is to investigate the cavitation problem in the single-stage and double-stage centrifugal pumps. The Volume of Fraction (VOF) method has been used for the numerical simulations together with Rayliegh-Plesset model for the gas-liquid two-phase flow inside the pump. In order to capture the turbulent phenomena, the standard k-${\varepsilon}$ turbulence model has been adopted, and the simulations have been done as unsteady cases. In addition, the motion of the rotating parts has been simulated using Multi Reference Frame(MRF) method. The results are presented and compared in terms of hydraulic head and NPSH for both the single-stage and double-stage pumps. The H-Q curves show the effects of cavitation on decreasing the pumps performances.

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Development of a 3-D CFD Program for Computing Two-Phase Flows with a Level Set Method (Level Set 상경계면 추적법을 적용한 3차원 CFD 프로그램의 개발)

  • Son G.;Hur N.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.73-80
    • /
    • 2004
  • A LS(Level Set) formulation is developed for computing two-phase flows on non- orthogonal meshes. Compared with the VOF(Volume-of-Fluid) method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. The LS formulation is implemented into a general purpose program for 3-D flows and verified through several test problems.

VOLUME CAPTURING METHOD USING UNSTRUCTURED GRID SYSTEM FOR NUMERICAL ANALYSIS OF MULTIPHASE FLOWS (다상유동 해석을 위한 비정렬격자계를 사용한 체적포착법)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.201-210
    • /
    • 2009
  • A volume capturing method using unstructured grid system for numerical analysis of multiphase flows is introduced in the present paper. This method uses an interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The novelty of CICSAM lies in the adaptive combination of high resolution discretization scheme which ensures the preservation of the sharpness and shape of the interface while retaining boundedness of the field, and no explicit interface reconstruction which is perceived to be difficult to implement on unstructured grid system. Several typical test cases for multiphase flows are presented, which are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with CICSAM. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows.

  • PDF