• Title/Summary/Keyword: Volterra system

Search Result 103, Processing Time 0.023 seconds

Identification of Volterra Kernels of Nonlinear System Having Backlash Type Nonlinearity

  • Rong, Li;Kashiwagi, H.;Harada, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.141-144
    • /
    • 1999
  • The authors have recently developed a new method for identification of Volterra kernels of nonlinear systems by use of pseudorandom M-sequence and correlation technique. And it is shown that nonlinear systems which can be expressed by Volterra series expansion are well identified by use of this method. However, there exist many nonlinear systems which can not be expressed by Volterra series mathematically. A nonlinear system having backlash type nonliear element is one of those systems, since backlash type nonlinear element has multi-valued function between its input and output. Since Volterra kernel expression of nonlinear system is one of the most useful representations of non-linear dynamical systems, it is of interest how the method of Volterra kernel identification can be ar plied to such backlash type nonlinear system. The authors have investigated the effect of application of Volterra kernel identification to those non-linear systems which, accurately speaking, is difficult to express by use of Volterra kernel expression. A pseudorandom M-sequence is applied to a nonlinear backlash-type system, and the crosscorrelation function is measured and Volterra kernels are obtained. The comparison of actual output and the estimated output by use of measured Volterra kernels show that we can still use Volterra kernel representation for those backlash-type nonlinear systems.

  • PDF

A New Method for Identifying Higher Volterra Kernel Having the Same Time Coordinate for Nonlinear System

  • Nishiyama, Eiji;Harada, Hiroshi;Rong, Li;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.137-140
    • /
    • 1999
  • A lot of researcher have proposed a method of kernel identifying nonlinear system by use of Wiener kernels[6-7] or Volterra kernel[5] and so on. In this research, the authors proposed a method of identifying Volterra kernels for nonlinear system by use of pseudorandom M-sequence in which a crosscorrelation function between input and output of a nonlinear system is taken[4]. we can be applied to an MISO nonlinear system or a system which depends on its input amplitude[2]. But, there exist many systems in which it is difficult to determine a Volterra kernel having the same time coordinate on the crosscorrelation function. In those cases, we have to estimate Volterra kernel by using its neighboring points[4]. In this paper, we propose a new method for not estimating but obtaining Volterra kernel having the same time coordinate using calculation between the neighboring points. Some numerical simulations show that this method is effective for obtaining higher order Volterra kernel of nonlinear control systems.

  • PDF

STABILITY IN VARIATION FOR NONLINEAR VOLTERRA DIFFERENCE SYSTEMS

  • Choi, Sung-Kyu;Koo, Nam-Jip
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.101-111
    • /
    • 2001
  • We investigate the property of h-stability, which is an important extension of the notions of exponential stability and uniform Lipschitz stability in variation for nonlinear Volterra difference systems.

  • PDF

Application of the CS-based Sparse Volterra Filter to the Super-RENS Disc Channel Modeling (Super-RENS 디스크 채널 모델링에서 CS-기반 Sparse Volterra 필터의 적용)

  • Moon, Woo-Sik;Park, Se-Hwang;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.59-65
    • /
    • 2012
  • In this paper, we investigate the compressed sensing (CS) algorithms for modeling a super-resolution near-field structure (super-RENS) disc system with a sparse Volterra filter. It is well known that the super-RENS disc system has severe nonlinear inter-symbol interference (ISI). A nonlinear system with memory can be well described with the Volterra series. Furthermore, CS can restore sparse or compressed signals from measurements. For these reasons, we employ the CS algorithms to estimate a sparse super-RENS read-out channel. The evaluation results show that the CS algorithms can efficiently construct a sparse Volterra model for the super-RENS read-out channel.

Adaptive identification of volterra kernel of nonlinear systems

  • Yeping, Sun;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.476-479
    • /
    • 1995
  • A real time and adaptive method for obtaining Volterra kernels of a nonlinear system by use of pseudorandom M-sequences and correlation technique is proposed. The Volterra kernels are calculated real time and the obtained Volterra kernels becomes more accurate as time goes on. The simulation results show the effectiveness of this method for identifying time-varying nonlinear system.

  • PDF

A Sufficient Condition on the Stability of Recursive Discrete-Time Third-Order Volterra Filters (재귀적 이산 시간 3차 Volterra 필터의 안정성에 대한 충분조건)

  • 김영인;임성빈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • This paper derives a sufficient condition on the stability of recursive third-order Volterra filters based on their filter coefficients. A Volterra filter is very effective in modeling nonlinear systems with memory. However, it is well-known that the nonrecursive Volterra filter requires a large number of filter coefficients to describe a nonlinear system. For this reason, recursive Volterra filters are usually considered because the recursive implementation requires a smaller number of coefficients compared to the nonrecursive one. Unfortunately, the main problem of the recursive Volterra filters is their inherent instablility. In this paper. we present a simple condition for the output of a recursive discrete-time third-order Volterra filter to be bounded whenever the input signal to the recursive Volterra filter is bounded by a finite constant.

  • PDF

Identification of Volterra Kernels of Nonlinear Van do Vusse Reactor

  • Kashiwagi, Hiroshi;Rong, Li
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.109-113
    • /
    • 2002
  • Van de Vusse reactor is known as a highly nonlinear chemical process and has been considered by a number of researchers as a benchmark problem for nonlinear chemical process. Various identification methods for nonlinear system are also verified by applying these methods to Van de Vusse reactor. From the point of view of identification, only the Volterra kernel of second order has been obtained until now. In this paper, the authors show that Volterra kernels of nonlinear Van de Vusse reactor of up to 3rd order are obtained by use of M-sequence correlation method. A pseudo-random M-sequence is applied to Van de Vusse reactor as an input and its output is measured. Taking the crosscorrelation function between the input and the output, we obtain up to 3rd order Volterra kernels, which is the highest order Volterra kernel obtained until now for Van de Vusse reactor. Computer simulations show that when Van de Vusse chemical process is identified by use of up to 3rd order Volterra kernels, a good agreement is observed between the calculated output and the actual output.

Hybrid Adaptive Volterra Filter Robust to Nonlinear Distortion

  • Kwon, Oh-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.95-103
    • /
    • 2008
  • In this paper, the new hybrid adaptive Volterra filter was proposed to be applied for compensating the nonlinear distortion of memoryless nonlinear systems with saturation characteristics. Through computer simulations as well as the analytical analysis, it could be shown that it is possible for both conventional Volterra filter and proposed hybrid Volterra filter, to be applied for linearizing the memoryless nonlinear system with nonlinear distortion. Also, the simulations results demonstrated that the proposed hybrid filter may have faster convergence speed and better capability of compensating the nonlinear distortion than the conventional Volterra filter.

Linearization of nonlinear system by use of volterra kernel

  • Nishiyama, Eiji;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.149-152
    • /
    • 1996
  • In this paper, the authors propose a new method for linearizing a nonlinear dynamical system by use of Volterra kernel of the nonlinear system. The authors have recently obtained a new method for measuring Volterra kernels of nonlinear control systems by use of a pseudo-random M-sequence and correlation technique. In this method, an M-sequence is applied to the nonlinear system and the crosscorrelation function between the input and the output gives us every crosssection of Volterra kernels up to 3rd order. Once we can get Volterra kernels of nonlinear system, we can construct a linearization method of the nonlinear system. Simulation results show good agreement between the observed results and the theoretical considerations.

  • PDF