• Title/Summary/Keyword: Voltage phase

Search Result 4,306, Processing Time 0.036 seconds

A Study on the Single-Phase PWM Rectifier with Neutral Leg (중성점을 가진 단상 PWM 정류기에 관한 연구)

  • 최연옥;김평호;한엄용;이진섭;조금배
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.675-679
    • /
    • 1999
  • A single-phase PWM current source rectifier with a neutral leg is presented and throughly analyzed in this paper. This novel topology is implemented by adding an extra leg a step-down single phase PWM space vector modulation method to reduce the dc output voltage harmonics is proposed. The PWM pattern generation need a digital system. As compared with a conventional single-phase PWM rectifier, over 20% improvement of the total harmonics distortion in the output voltage can be obtained. Different SVM techniques are analyzed for this PWM rectifier and simulation result are presented.

  • PDF

PFC Controller Design for 3-Phase Modular UPS (3상 모듈형 UPS용 PFC 제어기 설계)

  • Park, Nae Chun;Kim, Sang Hoon;Ji, Jun Keun
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.44-45
    • /
    • 2010
  • In this paper a new PFC Controller for 3-Phase Modular UPS is proposed. The PFC circuit for 3-Phase Modular UPS is implemented using three 1-phase 3-level boost PFC circuits. To control DC output voltage and AC input current, single voltage controller considering imbalance of two capacitor voltages and three independent current controllers are used in proposed PFC controller.

  • PDF

Reactive Power Control of Single-Phase Reactive Power Compensator for Distribution Line (배전선로용 단상 무효전력 보상기의 무효전력제어)

  • Sim, Woosik;Jo, Jongmin;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.

A Phase-Locked Loop with a Self-Noise Suppressing Voltage Controlled Oscillator (자기잡음제거 전압제어발진기 이용한 위상고정루프)

  • Choi, Young-Shig;Oh, Jung-Dae;Choi, Hyek-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.47-52
    • /
    • 2010
  • In this paper, a phase-locked loop with a self-noise suppressing voltage controlled oscillator to improve a phase noise characteristic has been proposed. The magnitude of the proposed transfer function is maximum 25dB lower than that of a conventional transfer function around a bandwidth. The proposed PLL has been designed based on a 1.8V $0.18{\mu}m$ CMOS process and proved by HSPICE simulation.

Digital Control Strategy for Single-phase Voltage-Doubler Boost Rectifiers

  • Cho, Young-Hoon;Mok, Hyung-Soo;Ji, Jun-Keun;Lai, Jih-Sheng
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.623-631
    • /
    • 2012
  • In this paper, a digital controller design procedure is presented for single-phase voltage-doubler boost rectifiers (VDBR). The model derivation of the single-phase VDBR is performed in the s-domain. After that the simplified equivalent z-domain models are derived. These z-domain models are utilized to design the input current and the output dc-link voltage controllers. For the controller design in the z-domain, the traditional K-factor method is modified by considering the nature of the digital controller. The frequency pre-warping and anti-windup techniques are adapted for the controller design. By using the proposed method, the phase margin and the control bandwidth are accurately achieved as required by controller designers in a practical frequency range. The proposed method is applied to a 2.5 kVA single-phase VDBR for Uninterruptible Power Supply (UPS) applications. From the simulation and the experimental results, the effectiveness of the proposed design method has been verified.

Compensation of voltage drop and improvement of power quality at AC railroad system with single-phase distributed STATCOM (단상 배전 STATCOM을 이용한 전기철도시스템의 전압강하 및 전력품질 향상)

  • Kim, Jun-Sang;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.192-193
    • /
    • 2006
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion may also occur to AC electrical railroad system. These problems affect not only power system stability. but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, and then, it is analyzed voltage drop and power quality for AC electrical railroad system both with single-Phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

  • PDF

Series Connected DC/DC Converter for Fuel Cell System using Variable Phase Shift Switching Method (가변 위상변위 스위칭방식을 적용한 연료전지용 변압기 직렬형 DC/DC 컨버터)

  • Park, Noh-Sik;Kwon, Soon-Jae;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.461-468
    • /
    • 2008
  • This paper presents a novel series connected DC/DC converter and a proper variable phase shift switching method in order to obtain high voltage ratio for fuel cell system. The proposed series connected DC/DC converter has same rectifier and LC filter for DC output voltage, so it can reduce the number of passive devices regardless of the converter number. In the conventional constant phase shift switching method, the proposed series connected DC converters have inverse bias output voltage. In order to overcome this problem, a simple but proper variable phase shift switching method is proposed in the a novel series connected DC/DC converter. In order to verify the proposed system, simulation and experiments are implemented.

Improvement of Phase Noise Characteristics for Tuning Voltage in Voltage Controlled Oscillator using Coupled Microstrip Lines (결합 마이크로스트립 라인을 이용한 전압제어 발진기의 동조전압에 따른 위상잡음 특성 개선)

  • Ryu, Keun-Kwan;Shin, Dong-Hwan;Yom, In-Bok;Kim, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.513-518
    • /
    • 2010
  • Improvement of phase noise characteristics in a different approach of HEMT VCO (Voltage Controlled Oscillator) with coupled microstrip lines to tune the oscillating frequency is investigated. Two HEMT VCOs of 9.8GHz are manufactured in the same configuration except for the frequency tuning circuit in order to empirically demonstrate the phase noise reduction. Experimental result shows that phase noise reduction can be enhanced 8dBc/Hz at 100KHz offset frequency from carrier by frequency tuning circuit with coupled microstrip lines over the conventional VCO.

Characteristics of Utility Transformer on Household Single-Phase ESS-PCS According to LC Filter Location (주택용 단상 ESS-PCS의 LC 필터위치에 따른 상용변압기의 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • Shortage of electric power occurs frequently along with increased electric power demand. ESS is a precaution to solve this issue. Household ESS has a capacity of approximately 3 kW/7 kWh. Household ESS batteries are typically designed with nominal voltages between 40 and 50 V. To connect household ESS with a 220 V AC system, low battery voltages in power conditioning system (PCS) should be boosted. To boost low battery voltage and match it with AC grid voltage, the use of a transformer for a commercial frequency can be considered. To attenuate switching harmonics of the household single-phase ESS-PCS, LC filter can be installed in two positions: on the primary side or on the secondary side of a transformer. A method has been used generally in single-phase inverters for the ESS-PCS. In another method, however, the output efficiency of the ESS-PCS may be decreased. Parasitic components of the transformer can affect voltage losses, when the square wave with the switching frequency in the ESS-PCS is passed through the transformer windings. In this work, the characteristics of the transformer according to the position of an LC filter are investigated for household single-phase ESS-PCS.

A Study on New Harmonic Elimination Method Using Walsh Series (왈쉬급수를 사용한 새로운 고조파 제거 방법에 관한 연구)

  • 박민호;안두수;원충연;이해기;이명규;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.263-272
    • /
    • 1990
  • In the variable speed driving system of a three phase induction motor controlled by a PWM inverter, the output terminal contains considerable amount of harmonic components of the voltage waveform due to the switching action of semiconductor devices, causing torque ripples, acoustic noise and oscillation of the motor. This paper describes a new algorithm which eliminates the harmonics and controls the fundamental voltage in three phase PWM inverter output waveform. The new algorithm utilizes the technique of particular harmonics elimination (PHE) by walsh series in three phase PWM inverter output waveform. A microprocessor (8086 CPU)-controlled three phase induction motor system is described to realize this algorithm. The system is designed for 3 phase output voltage in the 1-60Hz interval where 5th and 7th harmonics, and 5th, 7th, 11th, and 13th harmonics are eliminated. Also, the fundamental wave amplitude is designed to be proportional to the output frequency. The performance of the proposed method shows sufficient elimination of the harmonics and also reduction of computation time which determines switching pattern. The proposed PWM pattern by Walsh series, is effective not only to induction motors but also to other electromagetic equipments such as voltage regulators and UPS.