• Title/Summary/Keyword: Voltage feedback

Search Result 609, Processing Time 0.022 seconds

LDO Regulator with Improved Transient Response Characteristics and Feedback Voltage Detection Structure (Feedback Voltage Detection 구조 및 향상된 과도응답 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.313-318
    • /
    • 2022
  • The feedback voltage detection structure is proposed to alleviate overshoot and undershoot caused by the removal of the existing external output capacitor. Conventional LDO regulators suffer from overshoot and undershoot caused by imbalances in the power supply voltage. Therefore, the proposed LDO is designed to have a more improved transient response to form a new control path while maintaining only the feedback path of the conventional LDO regulator. A new control path detects overshoot and undershoot events in the output stage. Accordingly, the operation speed of the pass element is improved by charging and discharging the current of the gate node of the pass element. LDO regulators with feedback voltage sensing architecture operate over an input voltage range of 3.3V to 4.5V and have a load current of up to 200mA at an output voltage of 3V. According to the simulation result, when the load current is 200mA, it is 73mV under the undershoot condition and 61mV under the overshoot condition.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

A Discrete State-Space Control Scheme for Dynamic Voltage Restorers

  • Lei, He;Lin, Xin-Chun;Xue, Ming-Yu;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.400-408
    • /
    • 2013
  • This paper presents a discrete state-space controller using state feedback control and feed-forward decoupling to provide a desirable control bandwidth and control stability for dynamic voltage restorers (DVR). The paper initially discusses three typical applications of a DVR. The load-side capacitor DVR topology is preferred because of its better filtering capability. The proposed DVR controller offers almost full controllability because of the multi-feedback of state variables, including one-beat delay feedback. Feed-forward decoupling is usually employed to prevent disturbances of the load current and source voltage. Directly obtaining the feed-forward paths of the load current and source voltage in the discrete domain is a complicated process. Fortunately, the full feed-forward decoupling strategy can be easily applied to the discrete state-space controller by means of continuous transformation. Simulation and experimental results from a digital signal processor-based system are included to support theoretical analysis.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Average Current Mode Control for LLC Series Resonant DC-to-DC Converters

  • Park, Chang Hee;Cho, Sung Ho;Jang, Jinhaeng;Pidaparthy, Syam Kumar;Ahn, Taeyoung;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • An average current mode control scheme that consistently offers good dynamic performance for LLC series resonant DC-to-DC converters irrespective of the changes in the operational conditions is presented in this paper. The proposed control scheme employs current feedback from the resonant tank circuit through an integrator-type compensation amplifier to improve the dynamic performance and enhance the noise immunity and reliability of the feedback controller. Design guidelines are provided for both current feedback and voltage feedback compensation. The performance of the new control scheme is demonstrated through an experimental 150 W converter operating with 340 V to 390 V input voltage to provide a 24 V output voltage.

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

A Design of a High Performance UPS with Capacitor Current Feedback for Nonlinear Loads (비선형 부하에서 커패시터 전류 궤환을 통한 고성능 UPS 설계)

  • Lee, Woo-Cheol;Lee, Taeck-Kie
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.71-78
    • /
    • 2012
  • This paper presents a digital control solution to process capacitor current feedback of high performance single-phase UPS for non-linear loads. In all UPS the goal is to maintain the desired output voltage waveform and RMS value over all unknown load conditions and transient response. The proposed UPS uses instantaneous load voltage and filter capacitor current feedback, which is based on the double regulation loop such as the outer voltage control loop and inner current control loop. The proposed DSP-based digital-controlled PWM inverter system has fast dynamic response and low total harmonic distortion (THD) for nonlinear load. The control system was implemented on a 32bit Floating-point DSP controller TMS320C32 and tested on a 5[KVA] IGBT based inverter switching at 11[Khz]. The validity of the proposed scheme is investigated through simulation and experimental results.

Instantaneous Voltage Control of PWM Converters Using Feedback Linearization (궤환선형화 기법을 이용한 PWM 컨버터의 순시전압 제어)

  • 이지명;이기도;이동춘
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 1999
  • For fast response of the dc output voltage in P\hi1'v1 converter, it is desirable that the relation of power balance of the i input and output terminals is introduced to the system modeling. In this case, controller desi밍1 is not easy since the m model is nonlinear. In this paper, a nonlinear control them${\gamma}$ using input-output feedback linearization is used to solve t the nonlinear problem of the system. By nonlinear control. the voltage transient response can be faster, and it is also p possible to control the output voltage to be constant with smaller output filter capacitance for load disturbance.

  • PDF

Small-Signal Modeling and Analysis of Input Series-Output Parallel Connected Converter System for High Voltage Power Conversion Application (고 입력 전압 응용에 적합한 입력직렬-출력병렬 컨버터 시스템의 소신호 분석)

  • You, Jeong-Sik;Kim, Jung-Won;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2712-2714
    • /
    • 1999
  • The small signal model for input series-output parallel connected converter system employing charge control together with input capacitor voltage feedback loop is developed. From the model developed, the effect of input capacitor voltage feedback loop to the system stability and outer loop compensator design is analyzed. Theoretical results and simulation show that input capacitor voltage feedback loop has no critical effects on the system stability, so the system can be reduced to a equivalent single module for the stability analysis and outer loop compensator design.

  • PDF

Electrostatic Suspension System of Silicon Wafer using Relay Feedback Control (릴레이 제어법을 이용한 실리콘 웨이퍼의 정전부상에 관한 연구)

  • 전종업;이상욱;정일진;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.969-974
    • /
    • 2003
  • A simple and cost-effective method for the electrostatic suspension of thin plates like silicon wafers is proposed which is based on a switched voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply that can deliver a dc voltage of positive and/or negative polarity. This method possesses the unique feature that no high-voltage amplifiers are needed which leads to a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping origination from the air between the electrodes and levitated object. Using this scheme, a 4-inch silicon wafer was levitated stably with airgap variation decreasing down to 1 $\mu\textrm{m}$ at an airgap of 100 $\mu\textrm{m}$

  • PDF