• Title/Summary/Keyword: Visualization system

Search Result 1,939, Processing Time 0.028 seconds

Development of a 3D real-time visualization system for ship handling simulators using an open source 3D graphics engine (공개형 3D 그래픽 엔진을 활용한 선박 운항 시뮬레이터용 실시간 3D 가시화 시스템 개발)

  • Fang, Tae-Hyun;Oh, Jae-Yong;Hwang, Ho-Jin;Kim, Byung-Chul;Mun, Du-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.187-195
    • /
    • 2011
  • A ship handling simulator is popular means of preventing marine accidents caused by human error. It can also be used to train navigators. A real-time 3D visualization system, a component of a ship handling simulator, is an important component, as realistic and intuitive image generation play an essential role in improving the effects of education using ship handling simulators. This paper discusses the design of a new real-time 3D visualization system based on an open source 3D graphics engine as well as its implementation. The developed real-time 3D visualization system satisfies the operational requirements derived in terms of visualization functionalities, reuse of legacy graphic data, and interoperability with other systems constituting a ship handling simulator. This system has an architecture in which new functionalities are easily added.

3D Visualization for Flight Situational Awareness using Google Earth (구글 어스를 이용한 비행 상황인식을 위한 3차원 시각화)

  • Park, Seok-Gyu;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.181-188
    • /
    • 2010
  • This paper proposes 3D visualization systems for the real-time situation awareness and a state information of the aircraft. This system was embodied with OpenGL and the Google Earth of web base using situation data of the aircraft. The existing system has problem which speed decrease and visible restricted map because massive data of terrain and satellite photo. This system is supports the visualization tool which is economic and entire area for a real-time situation awareness with minimum flight information using Open-API of the Google Earth. Also provides a visible convenience to expansion-view using multiple location information. This research result could be used to system for the situation awareness of the aircraft from web environment.

Development of a CAE Middleware and a Visualization System for Supporting Interoperability of Continuous CAE Analysis Data (연속해석 데이터의 상호운용성을 지원하는 CAE 미들웨어와 가시화 시스템의 개발)

  • Song, In-Ho;Yang, Jeong-Sam;Jo, Hyun-Jei;Choi, Sang-Su
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • This paper proposes a CAE data translation and visualization technique that can verify time-varying continuous analysis simulation in a virtual reality (VR) environment. In previous research, the use of CAE analysis data has been problematic because of the lack of any interactive simulation controls for visualizing continuous simulation data. Moreover, the research on post-processing methods for real-time verification of CAE analysis data has not been sufficient. We therefore propose a scene graph based visualization method and a post-processing method for supporting interoperability of continuous CAE analysis data. These methods can continuously visualize static analysis data independently of any timeline; it can also continuously visualize dynamic analysis data that varies in relation to the timeline. The visualization system for continuous simulation data, which includes a CAE middleware that interfaces with various formats of CAE analysis data as well as functions for visualizing continuous simulation data and operational functions, enables users to verify simulation results with more realistic scenes. We also use the system to do a performance evaluation with regard to the visualization of continuous simulation data.

Visualization of oxygen distribution on leaf surfaces using VisiSens oxygen planar optode system (VisiSens 산소 평면광 센서 시스템을 이용한 식물 잎 표면의 산소분포 가시화)

  • Hwang, BaeGeun;Kim, HyeJeong;Lee, SangJoon
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Oxygen is a key factor in aerobic reactions and most biological activities. Visualization of oxygen distribution of a chemical process or biological system has been a very challenging object despite of its significance and potential impact. To monitor and visualize the spatial distribution of oxygen concentration, various techniques such as electro-chemical probe, polarographic electrode, LIF(laser-induced fluorescence) and so on have been introduced. Oxygen planar optode which utilizes the oxygen quenching of fluorescence light is one of the currently available methods for time-resolved visualization of oxygen distribution on a planar surface. In this study, we utilized VisiSens oxygen planar optode system to visualize the spatial distribution of oxygen concentration on leaves of Korean azalea. As a result, temporal variation of oxygen concentration distribution caused by respiratory activity of the leaf could be quantitatively monitored.

Visualization of Ocean Environments through VRML (VRML을 이용한 해역환경 가시화 연구)

  • Kim, Jong-Kyu;Park, Sang-Woo;Kim, Jong-Hwa
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.3
    • /
    • pp.427-433
    • /
    • 2005
  • The study of Web GUI(Graphic User Information) system for Virtual Reality System is mainly performed on effective methodology which transform real world data to computing world data. MGIS(Marine Geographic Information System) has its own target on reliable data service by acquisition of geometric information using accurate measurement and graphical visualization. This type of raw data visualization can be built without software tools, yet is incredibly useful for interpreting and communicating data. Even simple visualizations can aid in the interpretation of complex 3D relationships that are frequently encountered in the geosciences. The Virtual Reality Modeling Language provides an easy way for geoscientists to construct complex visualizations that can be viewed with free software. This study propose a three dimensional Web GUI system using MGIS-based three dimensional data models and virtual imaging system. Finally, we design a Web GUI system integrating above data models.

STUDY ON 3-D VIRTUAL REALITY FOR STEREOSCOPIC VISUALIZATION ON THE WEB (웹 환경에서의 입체적 가시화를 위한 3-D 가상현실 기법의 적용)

  • Lee, J.H.;Park, Y.C.;Kim, J.H.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • In this paper, our effort to apply 3-D Virtual Reality system for stereoscopic visualization of mesh data on the web is briefly described. This study is an extension of our previous and on-going research efforts to develop an automatic grid generation program specialized for wing mesh, named as eGWing. The program is developed by using JAVA programming language, and it can be used either as an application program on a local computer or as an applet in the network environment. In this research advancing layer method(ALM) augmented by elliptic smoothing method is used for the structured grid generation. And to achieve a stereoscopic viewing capability, two graphic windows are used to render its own viewing image for the left and right eye respectively. These two windows are merged into one image using 3D monitor and the viewers can see the mesh data visualization results with stereoscopic depth effects by using polarizing glasses. In this paper three dimensional mesh data visualization with stereoscopic technique combined with 3D monitor is demonstrated, and the current achievement would be a good start-up for further development of low-cost high-quality stereoscopic mesh data visualization system which can be shared by many users through the web.

Design and Implementation of Web-based Visualization System (웹 기반 가시화 시스템의 설계 및 구현)

  • 이재일;송정길
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.429-432
    • /
    • 2000
  • 일반사용자들이 쉽게 웹을 통하여 컴퓨터 그래픽스, 이미지(CT, MARI) 컴퓨터공학, 지리정보, 수치적 통계, 데이터분석 데이터를 그래픽으로 표현하고자 한다. VRML Visualization Server 구축하여 웹 기반 Visualizer 설계한다. 궁극적으로는 가시화의 실시간 표현에 있다. 모델링 기법에 있어서는 객체지향 그래픽 라이브러인 Visualization Toolkit을 이용하여 데이터의 Surface, Contour, Plane, Streamline, Probe 등을 구현하며, VRML 파일형태로 변환하여 클라이언트 웹으로 보내지게된다. 클라이언트 측 웹은 자신이 원하는 형태의 가시화 항목들을 선택하면 HTTP 에 의해 Visualization Server로 전송되어지고 Server의 ISAP는 전송되어져온 가시화항목을 가지고 가시화하여 VRML화일 형식으로 클라이언트 측으로 보내게된다.

  • PDF

Visualization of Combustion by Using Laser Diagnostic Techniques (레이저 진단기법을 이용한 연소 가시화 기술)

  • Chung S. H.;Won S. H.
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • Several visualization techniques of laser diagnostics are presented for combustion phenomena, including Mie scattering for flow, Rayleigh and Raman scattering spectroscopy for major species, laser-induced fluorescence for minor species, and laser-induced incandescence for soot. These techniques have been applied to understand the various combustion phenomena more clearly, including buoyancy-dominant flow system, diffusion flam oscillation, laminar and turbulent lifted flames, flame propagation along a vortex ring, and soot zone characteristics. The usefulness of laser diagnostics on a better understanding of physical mechanism is demonstrated.

  • PDF

Design and Implementation of Smart Gardening System Using Real-Time Visualization Algorithm Based on IoT (IoT 기반 실시간 시각화 알고리즘을 이용한 스마트가드닝 시스템 설계 및 구현)

  • Son, Soo-A;Park, Seok-Cheon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Data generated from sensors are exploding with recent development of IoT. This paradigm shift requires various industry fields that demand instant actions to analyze the arising data on a real-time basis, along with the real-time visualization analysis. As the existing visualization systems, however, perform visualization after storing data, the response time of the server cannot guarantee the ms-level processing that is close to real-time. They also have a problem of destroying data that can be major resources as they do not possess the process resources. Therefore, a smart gardening system that applies a real-time visualization algorithm using IoT sensing data under a gardening environment was designed and implement in this study. The response time of the server was measured to evaluate the performance of the suggested system. As a result, the response speed of the suggested real-time visualization algorithm was guaranteeing the ms-level processing close to real-time.