• Title/Summary/Keyword: Visible light transmittance

Search Result 229, Processing Time 0.024 seconds

A study on the visible wave of transmittance pressable ceramic core (열가압성형도재 코어의 가시광선 투과율에 관한 연구)

  • Jung, In-Ho;Lee, Sang-Deok;Nam, Sang-Yong
    • Journal of Technologic Dentistry
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the transmittance differences of pressable ceramic core due to thickness within the visible light spectrum. Methods: 36 specimens were divided into 2 groups (0.6mm, 0.8mm) which have each 3 specimens. The size of specimens was 10mm high and 10mm wide. The transmittance of specimens are measured by spectrophotometer Model Cary 500 that can measure infrared-ray, visible wave and ultraviolet-ray. Results: The results shows that there was no significant difference between specimen's thickness(0.6mm, 0.8mm) and transmittance. Conclusion: The individual's color perception is personal and there are numerous factors that influence on it. In general, human eye can perceive the color of thing only within visible light spectrum but in this experiment through spectrophotometer there was no big difference between specimen's thickness(0.6mm, 0.8mm) and transmittance. To sum up, The most important factors were a layed porcelain structure and its thickness rather than core thickness in the porcelain crown. Also, When making all ceramic core with dead pulp (nervous treatment tooth) when used as a restorative esthetic think is more efficient to improve.

Electrical and Optical Properties of Semitransparent Metal Electrodes for Top-emission Organic Light-emitting Diodes (전면 발광 유기 발광 소자용 반투명 금속의 전기적 및 광학적 특성)

  • Shin, Eun-Chul;An, Hui-Chul;Kim, Tae-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.938-942
    • /
    • 2008
  • Electrical and optical properties of semitransparent Ag and Al layer were studied, which are used for the electrodes in top-emission organic light-emitting diodes. Sheet resistance and transmittance of visible light through a thin layer were measured and analyzed. Several thin metal layers of Ag and Al were deposited onto a glass substrate up to a thickness of 50 nm using a thermal evaporation. Sheet resistance measurements show that a layer thickness is needed more than 15 nm and 20 nm for Ag and Al, respectively, when a proper sheet resistance is assumed to be less than $50{\Omega}/sq$. From the measurements of transmittance of visible light through a thin-metal layer, metallic behavior was observed when the layer thickness is over 25 nm for both films. Thus, from a study of sheet resistance and transmittance of visible light, a minimum proper thickness of semitransparent metal layer is 20 nm and 25 nm for Ag and Al, respectively.

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

A study on the transmittance due to thickness of zirconium core (지르코니아 코어의 두께에 따른 분광광도계 투과율에 관한 연구)

  • Jung, In-Ho;Park, Myung-Ja;Kim, Joo-Won
    • Journal of Technologic Dentistry
    • /
    • v.33 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the transmittance differences of zirconium core due to thickness within the visible light spectrum. Methods: 36 specimens were divided into 3 groups (0.6mm, 0.8mm, 1.0mm) which have each 12 specimens. The size of specimens was 10mm high and 10mm wide. The transmittance of specimens are measured by spectrophotometer Model Cary 500 that can measure infrared-ray, visible wave and ultraviolet-ray. Results: The results shows that there was no significant difference between specimen's thickness and transmittance. Conclusion: The individual's color perception is personal and there are numerous factors that influence on it. In general, human eye can perceive the color of thing only within visible light spectrum but in this experiment through spectrophotometer there was no big difference between specimen's thickness and transmittance. To sum up, The most important factors were a layed porcelain structure and its thickness rather than core thickness in the porcelain crown.

Comparison of blue light, visible light and infrared light transmittance difference of shading Goggles (청색광, 가시광선 및 적외선이 차광보안경에 따라 투과되는 투과율 차이 비교)

  • Jung, In-Ho;Lee, Sang-Deok;Lee, Sook-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-71
    • /
    • 2020
  • Purpose: To know the transmittance of light when wearing shading goggles and to protect eyes from blue light emitted from dental scanner when using CAD/CAM works or inducing polymerization reactions of dental resin with curing unit and infrared light occurred when melting Dental precious metal and non-precious metal alloys. Methods: By measuring and comparing the average transmittances of blue light, visible light and infrared ight by using UV-Vis Spectrophotometer analysis measuring instrument, I compared 3 GREEN Color Goggles worn when casting Dental precious metal and non-precious metal alloys, and compared each of YELLOW, ORANGE Color Goggles worn when using Dental CAD/CAM scanners and Light Curing(LED) the Dental resin. Results: In blue light range, YELLOW Color Goggles are more effective than ORANGE Color Goggles. In infrared light range, No.12 Goggles are more effective than No.10 and No.11 Goggles. Conclusion: When wearing blue light shading goggles to avoid harmful blue light occurred in using dental scanner and curing light, and when wearing infrared light shading goggles to avoid harmful infrared light during casting, to avoid the Side Effects like transmittance rate of blue light and infrared light goggles becomes too high to block appropriate amount of harmful light or too low that causing lower image clarity.

Preparation of UV Curable Anti-Glare Coating Films Using Micrometer-Sized Silica Particles (마이크로미터 크기의 실리카 입자를 이용한 UV 경화형 눈부심 방지 코팅 필름 제조)

  • Kim, Tae Hyoung;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.165-173
    • /
    • 2021
  • Anti-glare (AG) coating films are applied to various display fields such as liquid crystal displays, LED lighting, and touch panels. In this study, micrometer-sized silica particles were added as fillers in the UV-curable coating solutions to provide anti-glare effect. During this process, the effects of the particle size, content, stirring time, and mixing ratio of silica particles of different sizes were investigated on the haze values and visible light transmittance of the coating films. As a result, as the size of the silica particles increased and the content of the silica particles increased, the haze values increased, but the visible light transmittance decreased. On the other hand, the stirring time did not significantly affect the haze value and transmittance of coating films. In addition, as the mixing ratio of large-sized silica particles increased, the haze value increased, but on the contrary, the visible light transmittance decreased.

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Evaluation of Transmittance Characteristics of Contact Lenses (콘택트렌즈의 광투과율 특성 평가)

  • Yu, Dong-Sik;Moon, Byeong-Yeon;Kim, Do-Hyung;Paik, Sun-Mok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • We have measured the spectral transmittances of UV blocking soft contact lenses, regular soft contact lenses and regular RGP lenses using the method suggested in ANSI Z80.20 standard. In order to evaluate visible light transmitting and UV blocking characteristics, we have calculated transmittances by integrating over the specific spectral ranges, i.e., visible light, UVA, UVB and UVC. We found that mean transmittances of visible light for all three categories were over 90.0 % which could be considered as within acceptable range for a contact lens. The transmittance of the UVA and UVB radiation for the UV blocking soft lenses except some cases was within UVR (Ultraviolet radiation) transmittance standard. The UV blocking ability of regular soft and RGP lenses was poor as rather expected. These results will be expected to assist clinical opticians and practitioners in utilizing the transmittance characteristics about the contact lens.

  • PDF

Thermal treatment effects of sputtered ITO(glass) (Sputtered ITO(glass)의 열처리 효과)

  • Kim, Ho-Soo;Jung, Soon-Won;Koo, Kyung-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.554-557
    • /
    • 2001
  • Indium Tin Oxide(ITO) thin films have been fabricated by the dc magnetron sputtering technique with a target of a mixture $In_{2}O_{3}$(90mol%) and $SnO_{2}$(10mol%). We prepared ITO thin films with substrate temperature 200 to $400^{\circ}C$ and annealing temperature 200 to $500^{\circ}C$. Good polycrystalline-structured ITO films with a low electrical resistivity of $3.4{\times}10^{-4}\Omega{\cdot}cm$ have been obtained. The visible light transmittance of all obtained films was over 80 %.

  • PDF

Thermal treatment effects of sputtered ITO(glass) (Sputtered ITO(glass)의 열처리 효과)

  • 김호수;정순원;구경완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.554-557
    • /
    • 2001
  • Indium Tin Oxide(ITO) thin films have been fabricated by the dc magnetron sputtering technique with a target of a mixture In$_2$O$_3$(90mo1%) and SnO$_2$(10mo1%). We prepared ITO thin films with substrate temperature 200 to 400$^{\circ}C$ and annealing temperature 200 to 500$^{\circ}C$ food polycrystalline-structured ITO films with a low electrical resistivity of 3.4${\times}$10$\^$-4/ Ω$.$cm have been obtained. The visible light transmittance of all obtained films was over 80 %.

  • PDF