• Title/Summary/Keyword: Vibration loading

Search Result 674, Processing Time 0.023 seconds

Performance Analysis of Friction Damper Considering the Change of the Vertical Force (수직력의 변화를 고려한 마찰댐퍼의 거동 분석)

  • Cho, Sung Gook;Park, Woong Ki;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • In this paper, to protect the piping in nuclear power plants and various plant facilities, we have developed a damper using the friction method and carried out a study to analyze the performance. Friction typed damper means a device for attenuating vibration by generating a frictional force to the bearing and the shaft by applying a compressive force to the MER-Spring. In order to analyze the performance of the damper, the properties of MER-Spring and friction materials were analyzed, a study on the effects of friction was carried out, and the behavior of this equation was established. And, to determine whether deformation of the material and to examine the reliability of the behavior equation established, prototypes was produced and, through a performance test and finite element analysis of a damper made of specimens, they were analyzed. As a result, it is noted that the reliability of the material was confirmed, the coefficient of friction have to be adjusted according to the velocity, cyclic loading test and finite element analysis results show exhibits excellent results. In addition, a review of the dynamic loads in the future shall be performed for the usage in more broad fields.

Characteristics of the Bearing Capacity for New Auger-Drilled Piles (새로운 매입말뚝 공법의 지지력 특성)

  • 백규호
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.25-36
    • /
    • 1997
  • To increase the bearing capacity of existing auger-drilled piles and decrease the noise and vibration during the installation of the piles, Spirally-reamed and Under-reamed auger trilled piling methods were developed. Field tests were performed to verify the inurement degree of bearing capacity and the constructional possibility of the new augerdrilled piling methods. The test results showed that the bearing capacity of the new augertrilled piles was fairly improved by the grooves of piles, and the skin friction was affected by the groove height and spacing between grooves. It was found that the skin friction takes the great part of total bearing capacity in auger drilled Biles, i.e. 74~80% in case of the existing methods and 81~86% in case of these methods. Moreover, the settlement of spirally-reamed and under reamed piles was smaller than that of the existing augerdrilled pile for the same loading state.

  • PDF

Seismic torsional vibration in elevated tanks

  • Dutta, Sekhar Chandra;Murty, C.V.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.615-636
    • /
    • 2000
  • Some elevated water tanks have failed due to torsional vibrations in past earthquakes. The overall axisymmetric structural geometry and mass distribution of such structures may leave only a small accidental eccentricity between centre of stiffness and centre of mass. Such a small accidental eccentricity is not expected to cause a torsional failure. This paper studies the possibility of amplified torsional behaviour of elevated water tanks due to such small accidental eccentricity in the elastic as well as inelastic range; using two simple idealized systems with two coupled lateral-torsional degrees of freedom. The systems are capable of retaining the characteristics of two extreme categories of water tanks namely, a) tanks on staging with less number of columns and panels and b) tanks on staging with large number of columns and panels. The study shows that the presence of a small eccentricity may lead to large displacement of the staging edge in the elastic range, if the torsional-to-lateral time period ratio $({\tau})$ of the elevated tanks lies within a critical range of 0.7< ${\tau}$ <1.25. Inelastic behaviour study reveals that such excessive displacement in some of the reinforced concrete staging elements may cause unsymmetric yielding. This may lead to progressive strength deterioration through successive yielding in same elements under cyclic loading during earthquakes. Such localized strength drop progressively develop large strength eccentricity resulting in large localized inelastic displacement and ductility demand, leading to failure. So, elevated water tanks should have ${\tau}$ outside the said critical range to avoid amplified torsional response. The tanks supported on staging with less number of columns and panels are found to have greater torsional vulnerability. Tanks located near faults seem to have torsional vulnerability for large ${\tau}$.

Vibration Analysis of Network Communication Equipment (네트워크 통신장비의 진동 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, Jin-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2007
  • Some network equipments made in Korea were exposed to severe earthquake in Japan several years ago. More than a hundred slim base transfer network stations had been seized with the severe earthquake at Nigata and it was reported that less than fifteen sets showed blackout by interruption of electricity, not by the structural failure. The purpose of this paper is to check the structural safety of the network equipments by performing table test, and the static and dynamic finite element analysis. For the dynamic test, the station weighing 200 kg was subjected to the Zone 3 earthquake loading of GR-63-CORE on the shaking table to obtain the dynamic responses to compare with the analysis results. It is shown that the FE analysis results are a little bit larger than that of the experimental values. And the sensitivity analysis and optimization for the natural frequency is performed and it is found that the first natural frequency is sensitive to small design change as shown in the results. And the dynamic response of optimized design is less than the original design.

Study on the Determination of Fatigue Damage Parameter for Rubber Component under Multiaxial Loading (다축하중이 작용하는 방진고무부품 피로손상 파라미터 결정에 관한 연구)

  • Moon, Seong-In;Woo, Chang-Su;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.194-200
    • /
    • 2012
  • Rubber components have been widely used in automotive industry as anti-vibration components for many years. These subjected to fluctuating loads, often fail due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop the durability analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. In order to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and strain energy density was proposed as the fatigue damage parameter for rubber components. The fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed.

Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh Jong-In;Bang Hyung-Joon;Kim Chun-Gon;Hong Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter can measure low-frequency signal such as strain and the other demodulator using a passive Mach-Zehnder interferometer can detect high-frequency signal such as damage signal or impact signal. Using a proposed fiber Bragg grating sensor system, both the strain and damage signal of a cross-ply laminated composite beam under tensile loading were simultaneously measured. Analysis of the strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were induced due to transverse crack propagation in the 90 degree layer of composite beam and vibration with a maximum frequency of several hundreds of kilohertz was generated.

  • PDF

Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design (구조 최적설계를 위한 다양한 근사 최적화기법의 적용 및 비교에 관한 연구)

  • Song, Chang-Yong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1603-1611
    • /
    • 2010
  • The comparative study of regression-model-based approximate optimization techniques used in the strength design of an automotive knuckle component that will be under bump and brake loading conditions is carried out. The design problem is formulated such that the cross-sectional sizing variables are determined by minimizing the weight of the knuckle component that is subjected to stresses, deformations, and vibration frequency constraints. The techniques used in the comparative study are sequential approximate optimization (SAO), sequential two-point diagonal quadratic approximate optimization (STDQAO), and approximate optimization based on enhanced moving least squares method (MLSM), such as CF (constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization (PIDO) tools are utilized for the application of SAO and STDQAO. The enhanced MLSM-based approximate optimization techniques are newly developed to ensure constraint feasibility. The results of the approximate optimization techniques are compared with those of actual non-approximate optimization to evaluate their numerical performances.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Acoustic Structure Interaction Analysis of the Core Support Barrel for Pump Pulsation Loads (펌프 맥동하중에 대한 노심지지배럴 집합체의 음향-구조 연성해석)

  • Lee, Jang Won;Moon, Jong Sung;Kim, Jung Gyu;Sung, Ki Kwang;Kim, Hyun Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • The reactor internals shall be secured in safety and structural integrity under various vibrational loading conditions. Thus, U.S. NRC, Regulatory Guide 1.20 requires the evaluation for the reactor internals due to acoustic induced vibration including the response to the reactor coolant pump pressure pulsation. This paper suggests a methodology to develop an analytical model of the core support barrel accounting for the fluid around the structure and to analyze the responses to the pump pulsation loads using acoustic structure interaction analysis. The analysis results were compared with those of US Palo Verde 1 CVAP and showed a good agreement. Thus, it is expected that the suggested methodology could be an efficient way to evaluate the response of the core support barrel to the pump pulsation loads.

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.