DOI QR코드

DOI QR Code

Performance Analysis of Friction Damper Considering the Change of the Vertical Force

수직력의 변화를 고려한 마찰댐퍼의 거동 분석

  • Received : 2016.09.12
  • Accepted : 2016.09.28
  • Published : 2017.01.01

Abstract

In this paper, to protect the piping in nuclear power plants and various plant facilities, we have developed a damper using the friction method and carried out a study to analyze the performance. Friction typed damper means a device for attenuating vibration by generating a frictional force to the bearing and the shaft by applying a compressive force to the MER-Spring. In order to analyze the performance of the damper, the properties of MER-Spring and friction materials were analyzed, a study on the effects of friction was carried out, and the behavior of this equation was established. And, to determine whether deformation of the material and to examine the reliability of the behavior equation established, prototypes was produced and, through a performance test and finite element analysis of a damper made of specimens, they were analyzed. As a result, it is noted that the reliability of the material was confirmed, the coefficient of friction have to be adjusted according to the velocity, cyclic loading test and finite element analysis results show exhibits excellent results. In addition, a review of the dynamic loads in the future shall be performed for the usage in more broad fields.

이 논문에서는 원자력발전소나 각종 플랜트 시설물에서 배관을 보호하기 위하여 마찰방식을 이용한 댐퍼를 개발하여 성능을 분석하는 연구를 수행하였다. 마찰방식댐퍼는 MER-Spring에 압축력을 가하여 베어링과 샤프트에 마찰력을 발생시켜 진동을 감쇠시키는 장치이다. 댐퍼의 성능을 분석하기 위하여 MER-Spring과 마찰재의 재료특성을 분석하고, 마찰의 영향에 대한 연구를 수행하였으며, 이에 대한 거동 방정식을 수립하였다. 또한 재료의 변형 여부를 판단 및 수립된 거동방정식의 신뢰성 검토를 위하여 시작품을 제작하였고 시편으로 제작된 댐퍼의 성능 시험과 유한요소 해석을 통하여 이를 분석하였다. 그 결과, 재료의 신뢰성이 확인되었고 마찰계수는 속도에 따른 보정이 필요하며, 반복재하 실험 및 유한요소해석 결과 우수한 결과를 나타냄을 확인하였다. 또한, 추후에 동적하중에 대한 검토가 수행되어 이 연구의 성과가 더 넓은 범위에 적용되었으면 한다.

Keywords

References

  1. Bakre, S. V., Jangid, R. S., and Reddy, G. R. (2004), Seismic Response of Piping Systems with Isolation Devices, 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 2676-2688.
  2. Brown, D. P., Palmer, G. R., Werry, E. V., and Blahnik (1990), Basis for Snubber Aging Research: Nuclear Plant Aging Research Program, US Nuclear Regulatory Commission, NUREG/CR-5386, PNL-6911, Washington DC, 119.
  3. Cheung, J. H., Gae, M. S., Seo, Y. D., Choi, H. S., and Kim, M. K. (2013), Seismic Capacity Test of Nuclear Piping System using Multi-Platform Shake Table, Journal of the Earthquake Engineering Society of Korea, 17(1), 21-31. https://doi.org/10.5000/EESK.2013.17.1.021
  4. Iwatsubo, T., Sasaki, Y., Abe, H., Kuroda, K., Saito, Y., Tai, K., and Sumiya, H. (1999), NUPEC Project: Seismic Proving Test of Heavy Component with Energy Absorbing Supports, 7th International Conference on Nuclear Engineering, JSME, Tokyo, Japan, 4252-4259.
  5. Jinsuo, N., Richard, J. M., Charles, H. H., and Syed, A. A. (2010), Assessing Equivalent Viscous Damping Using Piping System Test Results, ASME Proceedings of Pressure Vessel & Piping 2010 Conference, 9.
  6. Nila, I., Ilinoiu, V., Ababei, D., Dobrescu, B., and Bogateanu, R. (2009), Low Frequency Damper, INCAS-Bulletin No. 1, 5.
  7. Sinha, R. (1996), Effectiveness of Seismic Support in Piping, 11th World Conference on Earthquake Engineering, 1782-1788.
  8. Yamazaki, E., and Kojima, N. (2007), Investigation on Ultimate Strength Evaluation of Snubber in Piping System of Japanese NPP. Intermational Association for Structural Mechanics in Reactor Technology, SMiRT 19, Toronto, 8.