• Title/Summary/Keyword: Vibration in Ship

Search Result 419, Processing Time 0.023 seconds

A Study on Structural Dynamic Modification of Ship Structure by Using FRF Synthesis Method (전달함수 합성법을 이용한 선박구조변경)

  • Choi, Su-Hyun;Kim, Kuk-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.53-58
    • /
    • 2006
  • When the vibration troubles occur on the ship structure during the sea trial, the rectification work is very restricted because of in-situ limitation. Usually the finite element method is used to improve vibration characteristics of the structure, but it takes lots of time and effort in modeling the structure and adjusting the finite element model in order to consider appropriate boundary conditions of a complex ship structure. Therefore, experimental methods have been in general suggested to obtain proper countermeasures without time-consuming in modeling. In this paper, FRF(frequency response function) synthesis method is applied to estimate natural frequency of the modified ship structure, which is obtained from experimental and numerical methods.

  • PDF

Development of NASTRAN-based Optimization Framework for Vibration Optimum Design of Ship Structure. (선박 구조물의 진동 최적설계를 위한 NASTRAN 기반 최적화 프레임웍의 제안)

  • Kong, Y.M.;Choi, S.H.;Chae, S.I.;Song, J.D.;Kim, Y.H.;Yang, B.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1223-1231
    • /
    • 2005
  • Recently, the issue of ship nitration due to the large scale, high speed and lightweight of ship is emerging. For pleasantness in the cabin, shipbuilders are asked for strict vibration criteria and the degree of nitration level at a deckhouse became an important condition for taking order from customers. This study proposes a new optimization framework that is NASTRAN external call type optimization method (OptShip) and applies to an optimum design to decrease the nitration level of a deckhouse. The merits of this method are capable of using of global searching method and selecting of various objective function and design variables. The global optimization algorithms used here are random tabu search method which has fast converging speed and searches various size domains and genetic algorithm which searches multi-point solutions and has a good search capability in a complex space. By adapting OptShip to full-scale model, the validity of the suggested method was investigated.

The study of 181,000 DWT BULK CARRIER global vibration characteristic by global vibration analysis (181,000 DWT BULK CARRIER 전선 진동해석을 통한 전선진동특성 고찰)

  • Lim, Gu-Sub;Jeong, Tea-Seok;Choi, Youndal-Dal;Seok, Ho-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.329-330
    • /
    • 2008
  • The 181,000 DWT Bulk Carrier has a different deck house type, which is not typical for previous bulk carriers, to meet the new international rules for bulk carriers. This new deck house has much smaller transverse breadth than the hull's transverse breath, resulting in large levels of the transverse response of the deck house. In addition, the longitudinal response of the funnel showed rather a large magnitude of vibration, which are excited by the ship's main excitations such as the main engine H-moment and the propeller surface forte when the ship operates at the NCR and the MCR speeds In the ballast condition. To solve these issues, the global forced vibration analysis has been performed for the ship and the ship structure has been modified to reduce the vibration level by increasing the girder depth and adjusting the engine room tank arrangement.

  • PDF

Study on Reduction of Excessive Noise and Vibration of Aft Part of High Speed Ro-Ro Passenger Ship (고속 여객선 선미부 과대 진동/소음 감소를 위한 연구)

  • Shin, Yunkil
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.196-202
    • /
    • 2019
  • In this study, the excessive noise and vibration phenomena of a high-speed Ro/Ro passenger ship were analyzed, and a countermeasure was taken based on them. This ship was granted a comfort class notation by the classification society, which was COMFORT-VIBRATION-II and COMFORT-NOISE-CREW-II. However, unfortunately, excessive noise and vibration in the aft part of the ship were delivered from the twin shaft propellers, and therefore the Class Requirement was not satisfied before delivery. In order to obtain the class notation, all of the concerned parties came to an agreement to reduce the noise and vibration level during operation after delivery because a seasonal ferry service was already scheduled and the cabin was fully booked. The root cause of the massive amount of noise and vibration was mainly the propeller-induced excitation pulse and beating that occurred from the mismatch of the rotating speeds of the two shaft lines. A 1st order vibrating force and beating phenomena existed in the propeller. Thus, a reduction of the excitation force, elimination of the beating phenomena, and decrease of the noise level at the aft area cabins and public spaces were required. In addition, structural reinforcements were conducted using pillars and additional girders at the aft part of the decks.

Measurement and Evaluation of Vibration of the Ship Propulsion Machinery (ISO 20283-4) (선박 추진기계의 진동 계측과 평가(ISO 20283-4))

  • Lee, D.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.560-564
    • /
    • 2009
  • This paper introduces measurement and evaluation of vibration of the ship propulsion machinery (ISO 20283-4). ISO 20283-2 for measurement of structural vibration on ships was finalized last year and ISO 20283-4 was drafted and reviewed by particulate ISO members now. As the importance and core field in ISO 20283-4, the torsional vibration of propulsion system for sea going vessels should be analysed in design stage and it should be confirmed by the its measurement during the sea trial. Criteria for evaluation of torsional loadings are defined by IACS (International Association of Classification Societies) UR M68. In this paper, the author introduced the important and controversial matters during the review of ISO 20283-4.

  • PDF

Field Practicality Review and Revision Proposal in ISO 6954 : 2000 (ISO 6954:2000의 현장 실용성 검토 및 개정에 대한 제안)

  • Lee, Donchool;Barro, Ronald D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.530-533
    • /
    • 2014
  • ISO6954:2000 (Mechanical vibration - Guidelines for the measurement, reporting and evaluation of vibration with regard to habitability on passenger and merchant ships) has taken effect as the governing body for vibration regarding habitability due to ship vibration. However, ISO6954:2000, when compared ISO6954:1984 (the first draft of ISO6954), needs to clear some deficiencies concerning convenience and reliability during field applications. In this paper, ISO6954: 1984 and 2000 are proposed on their revisions in the future.

  • PDF

A Study on the Evaluation of the Boarding Environment for the Ship Vibration (on the Basis of ISO-6954 : 2000(E)) (선박의 선내 진동에 의한 승선 환경 평가에 관한 연구 (ISO-6954 : 2000(E)의 평가방법에 기초))

  • Yu, Young-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.107-112
    • /
    • 2007
  • The vibration generated on shipboard is very important because it greatly affects on the comfortable mind of passenger and working conditions of crews. Shipboard vibration is closely concerned with the development of propulsion method and the type of main engine to decide speed of ship. To make the propulsion power, the main engine of ship have continuous explosion process in engine room, so the shipboard vibration is generated. The shipboard vibration causes the physiological and psychological damages to human body. In the case of the human body exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954 : 2000(E). In this paper, to evaluate the shipboard working environment, two kinds of vibration levels onboard ship were measured and compared with one another between engine rooms, engine control rooms and wheel house by the regulation of ISO 6954 : 2000(E).

  • PDF

Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure (선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법)

  • Kwon, Hyuk;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.

Forced Vibration Analysis for Duffing's Vibration Systems with the Multi-Degree-of-Freedom Systems (다자유도계를 갖는 듀핑 진동계의 강제진동해석)

  • 전진영;박용남;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • As ship's propulsion shafting system has been complicated, many linear methods that have been used until now are not sufficient enough to produce proper solutions and these solutions are ofter unreasonable. So we need to solve nonlinear systems, and many methods for solving nonlinear vibration system have been developed. In this study, the propulsion shafting system was modeled with Duffing's nonlinear vibration system and multi-degree-of-freedom, and analyzed by using Quasi-Newton method. And for the purpose of confirming the reliability of the calculating results for nonlinear forced torsional vibration of the propulsion shafting system, the nonlinear calculated results were compared with the linear calculated ones for ship's propulsion shafting system. In the result, for analysis of the forced torsional vibration of the propulsion systems with nonlinear elements, the modified Newton's method is confirmed reasonable.

  • PDF

A Study on the Coupled Forced Lateral Vibration of Multi-Supported Shafting by the Transfer Matrix Method (전달매트릭스법에 의한 다지점지지계의 연성강제감쇠 횡진동 계산에 관한 연구)

  • 이돈출;박병학;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.35-47
    • /
    • 1990
  • The natural frequency of lateral vibration for ship's propulsion shafting tends to become lower as the relative stiffness of supproted system of the propulsion shafting decreases and the weight of shafting increases. Especially, the propulsion shafting of high-power ships such as car ferries, roll-on/roll-off, and container ships are susceptible to lateral vibration for their resonant speeds are happened to be in ordinary operating speed ranges. So far, many papers on the lateral vibration of ship's propulsion shaftings are published but they treated mainly special cases and not explained explicitly the calculation process. In this paper, the calculation processes of undamped and also forced damped lateral vibration by the transfer matrix method are presented and the calculation programs are developed. With the developed computer programs, a ship's propulsion shafting which was introduced on the published paper is analyzed for its lateral vibration and also the lateral vibration of the main drive shaft for a lathe is calculated to show the availiability of developed computer programs.

  • PDF