DOI QR코드

DOI QR Code

Development of NASTRAN-based Optimization Framework for Vibration Optimum Design of Ship Structure.

선박 구조물의 진동 최적설계를 위한 NASTRAN 기반 최적화 프레임웍의 제안

  • 공영모 (㈜대우조선해양 진동소음 R&D팀) ;
  • 최수현 (㈜대우조선해양 진동소음 R&D팀) ;
  • 채상일 (부경대학교 대학원 기계공학부) ;
  • 송진대 (부경대학교 대학원 기계공학부) ;
  • 김용한 (부경대학교 대학원 기계공학부) ;
  • 양보석 (부경대학교 대학원 기계공학부)
  • Published : 2005.11.01

Abstract

Recently, the issue of ship nitration due to the large scale, high speed and lightweight of ship is emerging. For pleasantness in the cabin, shipbuilders are asked for strict vibration criteria and the degree of nitration level at a deckhouse became an important condition for taking order from customers. This study proposes a new optimization framework that is NASTRAN external call type optimization method (OptShip) and applies to an optimum design to decrease the nitration level of a deckhouse. The merits of this method are capable of using of global searching method and selecting of various objective function and design variables. The global optimization algorithms used here are random tabu search method which has fast converging speed and searches various size domains and genetic algorithm which searches multi-point solutions and has a good search capability in a complex space. By adapting OptShip to full-scale model, the validity of the suggested method was investigated.

Keywords

References

  1. 류연선, 임오강, 박경진, 2001, '최적설계입문', 인터비젼
  2. Moore, Greg, 1994, MSC.NASTRAN Design Sensitivity and Optimization, User's Guide, The MacNeal Schwendler Corporation
  3. Sitton, G., 1993, MSC.NASTRAN Basic Dynamic Analysis User's Guide, The MacNeal Schwendler Corporation
  4. Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley Pub
  5. Choi, B. G. and Yang, B. S., 2000, 'Optimum Shape Design of Rotor Shafts Using Genetic Algorithm,' Journal of Vibration and Control, Vol. 6, No. 2, pp. 207-222 https://doi.org/10.1177/107754630000600203
  6. Choi, B. G. and Yang, B. S., 2001, 'Optimal Design of Rotor-Bearing Systems Using Immune-genetic Algorithm,' Trans. ASME, Journal of Vibration and Acoustics, Vol. 123, No. 3, pp. 398-401 https://doi.org/10.1115/1.1377021
  7. Hu, N., 1992, 'Tabu Search Method with Random Moves for Globally Optimal Design,' International Journal of Numerical Methods in Engineering, Vol. 10, pp. 299-310
  8. 양보석, 전상범, 최병근, 유영훈, 1998, '유전 알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 제진판의 최적설계,' 대한기계학회논문집(A), 제 22 권, 제 7 호, pp. 1258-1266
  9. 양보석, 최병근, 전상범, 김동조, 1998, '유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치,' 한국퍼지 및 지능시스템학회논문지, 제 8 권, 제 3 호, pp. 71-79
  10. Kirkpatrick, S., C. D. Gelatt Jr. and M. P. Vecchi, 1982, Optimization by Simulated Annealing, IBM Research Report RC 9355
  11. Yang, B. S. and Lee, Y. H., 2000, Artificial Life Algorithm for Function Optimization, Proceedings of ASME Design Automation Conference, Baltimore, USA, DETC2000/DAC-14524
  12. Ahn, Y. K., Song, J. D. and Yang, B. S., 2003, 'Optimal Design of Engine Mount Using an Artificial Life Algorithm,' Journal of Sound and Vibration, Vol. 261, No. 1, pp. 309-328 https://doi.org/10.1016/S0022-460X(02)00989-6
  13. MSC.PATRAN User's Guide Ver. 8, The MacNealSchwendler Corporation, 1998
  14. 신찬호 외 5인, 1997, '선박진동/소음제어지침', 한국선급

Cited by

  1. The Diagnosis and Evaluation of Vibration and Noise in Vessel vol.32, pp.1, 2008, https://doi.org/10.5916/jkosme.2008.32.1.42
  2. Application of nonlinear integer programming for vibration reduction optimum design of ship structure vol.23, pp.8, 2009, https://doi.org/10.1007/s12206-009-0434-0