• Title/Summary/Keyword: VggNet

Search Result 98, Processing Time 0.027 seconds

Comparative Experiment of Cloud Classification and Detection of Aerial Image by Deep Learning (딥러닝에 의한 항공사진 구름 분류 및 탐지 비교 실험)

  • Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, So young;Shin, Sang ho;Park, Jin Sue;Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.409-418
    • /
    • 2021
  • As the amount of construction for aerial photography increases, the need for automation of quality inspection is emerging. In this study, an experiment was performed to classify or detect clouds in aerial photos using deep learning techniques. Also, classification and detection were performed by including satellite images in the learning data. As algorithms used in the experiment, GoogLeNet, VGG16, Faster R-CNN and YOLOv3 were applied and the results were compared. In addition, considering the practical limitations of securing erroneous images including clouds in aerial images, we also analyzed whether additional learning of satellite images affects classification and detection accuracy in comparison a training dataset that only contains aerial images. As results, the GoogLeNet and YOLOv3 algorithms showed relatively superior accuracy in cloud classification and detection of aerial images, respectively. GoogLeNet showed producer's accuracy of 83.8% for cloud and YOLOv3 showed producer's accuracy of 84.0% for cloud. And, the addition of satellite image learning data showed that it can be applied as an alternative when there is a lack of aerial image data.

Classification of Raccoon dog and Raccoon with Transfer Learning and Data Augmentation (전이 학습과 데이터 증강을 이용한 너구리와 라쿤 분류)

  • Dong-Min Park;Yeong-Seok Jo;Seokwon Yeom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.34-41
    • /
    • 2023
  • In recent years, as the range of human activities has increased, the introduction of alien species has become frequent. Among them, raccoons have been designated as harmful animals since 2020. Raccoons are similar in size and shape to raccoon dogs, so they generally need to be distinguished in capturing them. To solve this problem, we use VGG19, ResNet152V2, InceptionV3, InceptionResNet and NASNet, which are CNN deep learning models specialized for image classification. The parameters to be used for learning are pre-trained with a large amount of data, ImageNet. In order to classify the raccoon and raccoon dog datasets as outward features of animals, the image was converted to grayscale and brightness was normalized. Augmentation methods were applied using left and right inversion, rotation, scaling, and shift to create sufficient data for transfer learning. The FCL consists of 1 layer for the non-augmented dataset while 4 layers for the augmented dataset. Comparing the accuracy of various augmented datasets, the performance increased as more augmentation methods were applied.

Study on Neuron Activities for Adversarial Examples in Convolutional Neural Network Model by Population Sparseness Index (개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Convolutional neural networks have already been applied to various fields beyond human visual processing capabilities in the image processing area. However, they are exposed to a severe risk of deteriorating model performance due to the appearance of adversarial attacks. In addition, defense technology to respond to adversarial attacks is effective against the attack but is vulnerable to other types of attacks. Therefore, to respond to an adversarial attack, it is necessary to analyze how the performance of the adversarial attack deteriorates through the process inside the convolutional neural network. In this study, the adversarial attack of the Alexnet and VGG11 models was analyzed using the population sparseness index, a measure of neuronal activity in neurophysiology. Through the research, it was observed in each layer that the population sparsity index for adversarial examples showed differences from that of benign examples.

Discrimination of dicentric chromosome from radiation exposure patient data using a pretrained deep learning model

  • Soon Woo Kwon;Won Il Jang;Mi-Sook Kim;Ki Moon Seong;Yang Hee Lee;Hyo Jin Yoon;Susan Yang;Younghyun Lee;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3123-3128
    • /
    • 2024
  • The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997.

Handwriting Thai Digit Recognition Using Convolution Neural Networks (다양한 컨볼루션 신경망을 이용한 태국어 숫자 인식)

  • Onuean, Athita;Jung, Hanmin;Kim, Taehong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.15-17
    • /
    • 2021
  • Handwriting recognition research is mainly focused on deep learning techniques and has achieved a great performance in the last few years. Especially, handwritten Thai digit recognition has been an important research area including generic digital numerical information, such as Thai official government documents and receipts. However, it becomes also a challenging task for a long time. For resolving the unavailability of a large Thai digit dataset, this paper constructs our dataset and learns them with some variants of the CNN model; Decision tree, K-nearest neighbors, Alexnet, LaNet-5, and VGG (11,13,16,19). The experimental results using the accuracy metric show the maximum accuracy of 98.29% when using VGG 13 with batch normalization.

  • PDF

Waste Classification by Fine-Tuning Pre-trained CNN and GAN

  • Alsabei, Amani;Alsayed, Ashwaq;Alzahrani, Manar;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.65-70
    • /
    • 2021
  • Waste accumulation is becoming a significant challenge in most urban areas and if it continues unchecked, is poised to have severe repercussions on our environment and health. The massive industrialisation in our cities has been followed by a commensurate waste creation that has become a bottleneck for even waste management systems. While recycling is a viable solution for waste management, it can be daunting to classify waste material for recycling accurately. In this study, transfer learning models were proposed to automatically classify wastes based on six materials (cardboard, glass, metal, paper, plastic, and trash). The tested pre-trained models were ResNet50, VGG16, InceptionV3, and Xception. Data augmentation was done using a Generative Adversarial Network (GAN) with various image generation percentages. It was found that models based on Xception and VGG16 were more robust. In contrast, models based on ResNet50 and InceptionV3 were sensitive to the added machine-generated images as the accuracy degrades significantly compared to training with no artificial data.

CNN-based Recommendation Model for Classifying HS Code (HS 코드 분류를 위한 CNN 기반의 추천 모델 개발)

  • Lee, Dongju;Kim, Gunwoo;Choi, Keunho
    • Management & Information Systems Review
    • /
    • v.39 no.3
    • /
    • pp.1-16
    • /
    • 2020
  • The current tariff return system requires tax officials to calculate tax amount by themselves and pay the tax amount on their own responsibility. In other words, in principle, the duty and responsibility of reporting payment system are imposed only on the taxee who is required to calculate and pay the tax accurately. In case the tax payment system fails to fulfill the duty and responsibility, the additional tax is imposed on the taxee by collecting the tax shortfall and imposing the tax deduction on For this reason, item classifications, together with tariff assessments, are the most difficult and could pose a significant risk to entities if they are misclassified. For this reason, import reports are consigned to customs officials, who are customs experts, while paying a substantial fee. The purpose of this study is to classify HS items to be reported upon import declaration and to indicate HS codes to be recorded on import declaration. HS items were classified using the attached image in the case of item classification based on the case of the classification of items by the Korea Customs Service for classification of HS items. For image classification, CNN was used as a deep learning algorithm commonly used for image recognition and Vgg16, Vgg19, ResNet50 and Inception-V3 models were used among CNN models. To improve classification accuracy, two datasets were created. Dataset1 selected five types with the most HS code images, and Dataset2 was tested by dividing them into five types with 87 Chapter, the most among HS code 2 units. The classification accuracy was highest when HS item classification was performed by learning with dual database2, the corresponding model was Inception-V3, and the ResNet50 had the lowest classification accuracy. The study identified the possibility of HS item classification based on the first item image registered in the item classification determination case, and the second point of this study is that HS item classification, which has not been attempted before, was attempted through the CNN model.

Steel Surface Defect Detection using the RetinaNet Detection Model

  • Sharma, Mansi;Lim, Jong-Tae;Chae, Yi-Geun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.136-146
    • /
    • 2022
  • Some surface defects make the weak quality of steel materials. To limit these defects, we advocate a one-stage detector model RetinaNet among diverse detection algorithms in deep learning. There are several backbones in the RetinaNet model. We acknowledged two backbones, which are ResNet50 and VGG19. To validate our model, we compared and analyzed several traditional models, one-stage models like YOLO and SSD models and two-stage models like Faster-RCNN, EDDN, and Xception models, with simulations based on steel individual classes. We also performed the correlation of the time factor between one-stage and two-stage models. Comparative analysis shows that the proposed model achieves excellent results on the dataset of the Northeastern University surface defect detection dataset. We would like to work on different backbones to check the efficiency of the model for real world, increasing the datasets through augmentation and focus on improving our limitation.

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

An Implementation of Effective CNN Model for AD Detection

  • Vyshnavi Ramineni;Goo-Rak Kwon
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.90-97
    • /
    • 2024
  • This paper focuses on detecting Alzheimer's Disease (AD). The most usual form of dementia is Alzheimer's disease, which causes permanent cause memory cell damage. Alzheimer's disease, a neurodegenerative disease, increases slowly over time. For this matter, early detection of Alzheimer's disease is important. The purpose of this work is using Magnetic Resonance Imaging (MRI) to diagnose AD. A Convolution Neural Network (CNN) model, Reset, and VGG the pre-trained learning models are used. Performing analysis and validation of layers affects the effectiveness of the model. T1-weighted MRI images are taken for preprocessing from ADNI. The Dataset images are taken from the Alzheimer's Disease Neuroimaging Initiative (ADNI). 3D MRI scans into 2D image slices shows the optimization method in the training process while achieving 96% and 94% accuracy in VGG 16 and ResNet 18 respectively. This study aims to classify AD from brain 3D MRI images and obtain better results.