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A B S T R A C T   

The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the 
ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric 
chromosome discrimination method based on deep convolutional neural networks using radiation exposure 
patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal 
and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified 
and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, 
with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative 
predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997.   

1. Introduction 

Dicentric chromosomes (DCs), representing a type of chromosome 
aberration, are biomarkers of radiation dose estimation. The dicentric 
chromosome assay (DCA) is the gold standard method in biological 
dosimetry [1], in which the number of DCs is counted on among con
ventional Giemsa-stained metaphase cells. Trained experts can score 
500 cells or 100 DCs on metaphase spread images, achieving reasonably 
accurate dose estimations according to the International Atomic Energy 
Agency (IAEA) DC scoring recommendation [1]. However, for each 
patient, this DC scoring method is known [1] to take two or three days. 
Therefore, to save scoring time, a number of attempts [2–10] to develop 
automated DCAs have been proposed. 

The automated DCA process involves three main stages: metaphase 
spread identification, chromosome detection, and DC discrimination 
[11]. Scorable candidate metaphase images are selected from 
low-resolution scans of chromosome microscope slides in the first stage 
of metaphase spread identification. The chromosome detection stage 
aims to detect individual chromosomes from metaphase spread images 

that contain chromosomes and stains, and the DC discrimination stage 
distinguishes DCs and normal chromosomes among the individual 
chromosome images. 

Several methods [2,7,12–17] based on machine learning techniques 
have been proposed for automatic DC discrimination. Lorch et al. [12] 
proposed a DC detection procedure that involves obtaining chromosome 
image skeletons with local maxima of digitized chromosome pixel value 
levels. Piper and Sprey [13] proposed an adaptive classifier to determine 
the number of centromeres per chromosome by measuring the number 
of local minima in longitudinal integrated density profiles of chromo
somes. Schunck et al. [2] reported the performance of the Metafer 
DCScore, a commercial, automated DC scoring module. Furthermore, 
Romm et al. [14] compared the levels of performance of three Metafer 
DCScore-integrated classifiers for DC detection. Employing classifica
tion criteria, such as chromosome width, length, and area, these 
DCScore classifiers were modified at the Federal Office for Radiation 
Protection (Bundesamt für Strahlenschutz) in Germany and the Institute 
for Radiological Protection and Nuclear Safety (L’Institut de Radiopro
tection et de Sûreté Nucléaire) in France. Arachchige et al. [18] 
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proposed a centromere counting method that involves extracting cen
terlines with pruning skeletons based on discrete curve evolution [19]. 
In addition, Arachchige et al. [16] proposed an intensity-integrated 
Laplacian-based thickness measurement method to detect centro
meres. Li et al. [17] developed a DC discrimination method using a 
support vector machine and a boosting classifier. Shen et al. [7] pro
posed a DC detection classifier using the widths and gray values of 
centromeres. However, these classical machine learning-based DC 
discrimination methods are limited in their accuracies, with true posi
tive rates (TPRs) of 0.50–0.85 and positive predictive values (PPVs) of 
0.44–0.83. 

Deep learning (DL) technology [20–24] has recently shown 
outstanding performance in image analysis. In related research fields, 
the DL method has been actively applied to classify Giemsa-banded 
chromosomes for karyotyping [25–31]. In addition, Jang et al. [8] 
have successfully applied the DL method to identify DCs from ex vivo 
conventional Giemsa-stained chromosome images using the Faster 
Region-based Convolutional Network (Faster R–CNN) [32] with Feature 
Pyramid Networks (FPN) [33]. Moreover, Shen et al. used two-stage DL 
networks for DC identification [10]. 

The occurrence of DCs, which are sensitive to radiation exposure, is a 
rare event in nature. Hence, previous studies have been conducted on 
data gathered from irradiated ex vivo samples. However, this study aims 
to propose a high-precision automatic DC discrimination deep con
volutional neural network (DCNN) that can employ DCs obtained in vivo 
from radiation exposure patients from the Korea Institute of Radiolog
ical Medical Sciences (KIRAMS). Moreover, we investigated the perfor
mance of our DCNN using mixed in vivo datasets from KIRAMS and ex 
vivo chromosome datasets from the Dongnam Institute of Radiological 
& Medical Sciences (DIRAMS) to show its applicability for DC discrim
ination on the different datasets. 

2. Materials and methods 

2.1. Preparation of in vivo chromosome images 

In this study, 2868 metaphase spread images, each containing at 
least one DC, from 45 patients with radiation exposure from KIRAMS 
from 2010 to 2017 were selected to build the in vivo and KIRAMS 
datasets. The metaphase images were prepared from the patients’ pe
ripheral blood lymphocytes following the IAEA recommendation pro
tocol [1]. The blood samples were incubated at 37.0 ◦C with 5% CO2 for 
24 h. After that, the lymphocytes were isolated and cultivated for 24 h in 
culture medium containing a mitotic inhibitor (0.06 μg/ml Colcemid; 
Gibco, KaryoMAX COLCEMID Solution, USA). Then, hypotonic potas
sium chloride treatment was used to harvest metaphase cells, which 
were fixed in a 3:1 mixture of methanol and acetic acid. The slides were 
dried at 60 ◦C for 20 h and stained using the solid Giemsa method. 
Finally, Metaphase images were obtained using the Metafer 4 systems 
(MetaSystems, Germany), equipped with a CoolCube 1 camera, which 
supports a resolution of 1360 x 1024 pixels and has a pixel size of 6.45 
μm × 6.45 μm. The images were taken using Zeiss Axio Imager Z2 mi
croscopes (Carl Zeiss, Germany) and with an objecitve Plan-Apochromat 
63x/1.4 oil. 

From the KIRAMS metaphase spread images, individual chromosome 
images were obtained by cropping rectangular-shaped fields along the 
contour of each chromosome edge. Then, a padding operation was 
applied to the rectangular images to change their proportions to square. 
The background of each cropped image was removed so that the target 
chromosome remained with its mask. The background pixel value was 
then filled with the average color of the pixels that had been removed so 
that the processed image had the appearance of the original on the 
metaphase image. The input images were resized to 64 × 64 pixels. 

2.2. Training, validation, and test datasets 

In addition to the in vivo chromosome images obtained from KIR
AMS, ex vivo images were derived from the DIRAMS database [8], 
which has a number of DC and normal chromosome images. Table 1 
shows the numbers of normal chromosomes and DCs among the in vivo 
and ex vivo datasets used for the training, validation, and testing of the 
DCNN models. Note that the chromosome numbers of the validation 
datasets for each label were set to approximately 10% of the sum of the 
training and validation numbers. 

Fig. 1 shows examples of the chromosome images from the KIRAMS 
and DIRAMS datasets. As mentioned above, the DIRAMS datasets consist 
of ex vivo datasets obtained from blood irradiated using 60Co gamma 
rays. Six different dose levels were used: 0, 0.5, 1, 2, 3, and 4 Gy. The 
radiation was delivered at an absorbed dose rate of 0.8 Gy/min, as 
measured by an ionization chamber detector [8]. Conversely, the KIR
AMS datasets were derived from in vivo radiation exposure patient 
samples. 

In addition to the KIRAMS and DIRAMS datasets, “Subsampled 
KIRAMS” and “KIRAMS + DIRAMS” datasets were prepared. Table 2 
shows the numbers of normal chromosomes and DCs from those two 
datasets. In the subsampled KIRAMS datasets, the number of normal 
chromosomes for each label was adjusted to equal that of the DCs by 
random sampling. The KIRAMS + DIRAMS dataset was created simply 
by merging the two types of datasets. The test dataset was the KIRAMS 
test dataset. 

2.3. Modified DCNN models for DC discrimination 

This study used DCNNs to discriminate between individuals with 
normal chromosomes and DCs. DCNNs, DenseNet121, DenseNet201 
[23], EfficientNetB5, EfficientNetB6 [24], ResNet101, ResNet152 [22], 
VGG16, and VGG19 [21] on Keras [34] were selected. As shown in 
Fig. 2, each DCNN without classifiers was utilized as a feature extractor. 
The classifier was modified with a global average or a max pooling layer, 
a dropout layer, and a batch normalization layer. The last layer of the 
classifier was set to the sigmoid layer for the binary classification. 
Random horizontal and vertical flips, random zooms with 0.1 ratios, and 
random rotation online augmentations were applied to the preprocess
ing layers before the DCNNs were modified to feed various input image 
shapes. 

Furthermore, the transfer learning method was applied to train the 
DCNNs. The transfer learning method is a well-known method that en
hances the performance of DCNNs trained on scarce data from a target 
domain using the weight of DCNNs trained on abundant data from a 
source domain. The weights of the pre-trained DCNNs on the publicly 
accessible ImageNet dataset [35] were fine-tuned for this DC discrimi
nation task. Rescaling methods for fine-tuning the pre-trained DCNNs 
were applied with the origin rescaling method for the pre-trained 
DCNNs. Labels 0 and 1 indicate DCs and normal chromosomes, 
respectively. 

2.4. Experimental setting 

The training and testing were conducted on an Ubuntu 20.04 server 
with an Xeon® E5-2680 v4 CPU @ 2.40 GHz with 128 GB of RAM, and 

Table 1 
The number of chromosome images in training, validation, and test datasets of 
normal chromosomes and DCs from the KIRAMS and DIRAMS databases.   

KIRAMS dataset DIRAMS dataset 

Normal Dicentric Normal Dicentric 

Training 99,416 2397 13,506 9273 
Validation 11,046 266 1501 1030 
Test 5796 137 156 115  
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four Geforce 1080 Ti GPUs with 11,264 MiB. The Tensorflow (2.8.0) 
[36] DL library and Python (3.8.10) were employed to utilize the 
modified DCNNs. The binary cross-entropy function was used as a loss 
function. A Bayesian optimization in Keras-tuner [37] was applied to 
search the optimal learning rates, batch sizes, dropout rates, and pooling 
layer types. The learning rate was sampled within the range of [5 ×
10− 7, 5 × 10− 4], the dropout rate within the [0.0, 1.0], the pooling layer 
type from [global average pooling layer, max pooling layer], and the 
batch size within [32, 64, 96, 128, 160] with 200 maximum trial at
tempts. Each trial was carried out with 20 epochs. Both loss functions 
were minimized by an Adam optimizer with a decay rate of 10− 6 and the 
suggested learning rate from the Keras-tuner. All layers in the 
pre-trained DCNNs were fine-tuned with 500 maximum epochs. An early 
stopping strategy was employed to complete the training when the 
validation loss did not decrease in 20 successive epochs. The weights of 
the fine-tuned DCNNs were stored when the validation loss was lowest 
during the training. 

2.5. Evaluation metrics 

Considering the class imbalance of normal chromosomes and DCs, it 
was necessary to calculate the accuracy of each class. Accordingly, true 
positive rate (TPR), true negative rate (TNR), positive predictive value 
(PPV), negative predictive value (NPV), and area under the receiver 
operating characteristic curve (AUROC) metrics were used to measure 
the performance of the DCNNs on the KIRAMS and DIRAMS datasets. 

Positive values indicate DC cases and negative values indicate normal 
chromosome cases. The evaluated metrics, except AUROC, were defined 
by the following Eqs. (1)–(4).  

True positive rate: TPR = TP / (TP + FN)                                          (1)  

True negative rate: TNR = TN / (TN + FP)                                        (2)  

Positive predictive value: PPV = TP / (TP + FP)                                 (3)  

Negative predictive value: NPV = TN / (TN + FN)                              (4) 

where TP is the number of true positives, FN is the number of false 
negatives, TN is the number of true negatives, and FP is the number of 
false positives. 

3. Results and discussion 

The modified DCNNs were trained on a subsampled KIRAMS dataset, 
and another modified VGG19 was trained from scratch without transfer 
learning. The DCNNs were evaluated on the test KIRAMS dataset. The 
results of the modified DCNNs on the subsampled datasets are summa
rized in Table 3. The modified VGG19 achieved the best performance, 
with a TPR of 1.000, an NPV of 1.000, and an AUROC of 0.997. The 
modified DenseNet201 achieved the best performance, with a TNR of 
0.966 and a PPV of 0.401. Therefore, the modified VGG19 was proposed 
as the baseline model because of its highest performance in TPR, NPV, 
and AUROC. The modified VGG19 without transfer learning exhibited a 
decrease in TPR, NPV, and AUROC by 0.036, 0.001, and 0.003, 
respectively, while showing an increase of 0.012 in TNR and 0.084 in 
PPV. Even though the use of transfer learning did not show significant 
performance improvements overall, it was employed in this study for 
training the model because of the performance enhancements in TPR, 
NPV, and AUROC. 

The DC discrimination performances of our proposed model, the 
modified VGG19, trained on the KIRAMS datasets are summarized in 
Table 4. The modified VGG19 achieved a TPR of 0.927, a TNR of 0.997, a 
PPV of 0.882, an NPV of 0.998, and an AUROC of 0.997. Because the 

Fig. 1. (a) DC and (b) normal chromosome images from the KIRAMS dataset and (c) DC and (d) normal chromosome images from the DIRAMS dataset.  

Table 2 
Additional datasets: The number of chromosome images in training, validation, 
and test datasets in subsampled KIRAMS and KIRAMS + DIRAMS datasets.   

Subsampled KIRAMS dataset KIRAMS + DIRAMS dataset 

Normal Dicentric Normal Dicentric 

Training 2397 2397 112,922 11,670 
Validation 266 266 12,547 1296 
Test 5796 137 5796 137  

Fig. 2. Representative diagram of a modified DCNN.  
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number of normal samples in the KIRAMS training dataset was 41 times 
higher than the number of normal samples in the subsampled KIRAMS 
dataset, the TPR was lower (0.920 vs. 1.000), but the PPV was signifi
cantly higher (0.882 vs. 0.383) than the results of the modified VGG19 
trained on the subsampled KIRAMS dataset. 

The performance results of the proposed model trained on the DIR
AMS dataset are summarized in Table 5. The TPR, TNR, PPV, NPV, and 
AUROC were 0.991, 0.974, 0.966, 0.993, and 1.000 on the DIRAMS test 
dataset, respectively. The modified VGG19 was also evaluated on the 
test KIRAMS dataset. The modified VGG19 achieved a TPR of 0.993, a 
TNR of 0.858, a PPV of 0.145, an NPV of 1.000, and an AUROC of 0.983 
on the test KIRAMS dataset. 

The performance results of the proposed model trained on the KIR
AMS + DIRAMS dataset are summarized in Table 6. The KIRAMS test 
dataset returned results with a TPR of 0.905, a TNR of 0.995, a PPV of 
0.814, an NPV of 0.998, and an AUROC of 0.994, and the DIRAMS test 
dataset returned results with a TPR of 1.000, a TNR of 0.994, a PPV of 
0.992, an NPV of 1.000, and an AUROC of 1.000. These results indicate 
that the proposed model was capable of DC discrimination on different 
datasets simultaneously. 

The DC discrimination results of this and previous works are sum
marized in Table 7. Of note, the studies listed in Table 7 were conducted 
using different non-public datasets and input image types, metaphase 
spreads, and individual chromosome images; thus, the DC discrimina
tion performance results were not directly comparable. 

The DC discrimination capabilities of the chromosome classifiers in 
the models proposed by Rogan [3], Shen [7,10], Jang [8], Lorch [12], 
Room [14], and Li [17] might be limited due to the requirement to 
perform complex tasks, as they were programmed to detect and 
discriminate chromosomes using metaphase spread images. 

Therefore, the emphasis was placed on the DC discrimination capa
bility in this work, and chromosome detection and discrimination stages 
were separated, like Shen’s approach [7,10]. Furthermore, manually 
labeled individual chromosome image data was utilized instead of 
automating chromosome detection. As a result, our proposed model 
could achieve high overall results because our model was able to focus 
solely on the DC discrimination task. 

Figs. 3 and 4 demonstrate that our proposed model, as evaluated 
through the loss and TPR curves over multiple epochs, was successfully 
trained on the KIRAMS dataset. Additionally, the t-distributed stochastic 
neighbor embedding (t-SNE) method [38], a widely used technique for 
data clustering and visualization, was employed to visualize the chro
mosome image feature distribution obtained from the global average or 

max pooling layer of the proposed model. This method embeds 
higher-dimensional features onto lower-dimensional features while 
preserving the distances between adjacent features. In this way, such 
high-dimensional features can be visualized two dimensionally. The 
t-SNE visualization was performed on the modified VGG19 trained on 
both the DIRAMS and KIRAMS datasets. As illustrated in Figs. 5 and 6, 
blue and red points correspond to the test dataset’s feature embeddings 
of normal chromosomes and DCs, respectively. These visualization re
sults indicate that the image features of each class from each dataset, as 
processed by the modified VGG19, were effectively clustered. 

4. Conclusion 

In this study, a high-precision DC discrimination method using a 
modified and pre-trained VGG19 was proposed. This proposed method 
achieved high DC discrimination performance on both in vivo and ex 
vivo datasets. The results were as follows: 

Table 3 
Comparison results of the DCNNs. The DCNNs were trained on the subsampled 
KIRAMS dataset.  

Modified DCNN TPR TNR PPV NPV AUROC 

DenseNet121 0.993 0.951 0.324 1.000 0.995 
DenseNet201 0.964 0.966 0.401 0.999 0.991 
EfficientNetB5 0.949 0.944 0.286 0.999 0.979 
EfficientNetB6 0.964 0.949 0.309 0.999 0.990 
ResNet101 0.956 0.940 0.274 0.999 0.982 
ResNet152 0.942 0.939 0.267 0.999 0.986 
VGG16 0.993 0.945 0.299 1.000 0.997 
VGG19 1.000 0.962 0.383 1.000 0.997 
VGG19 (without transfer learning) 0.964 0.974 0.467 0.999 0.994  

Table 4 
Summary of the performance of modified VGG19s trained on the subsampled 
KIRAMS and KIRAMS training datasets and tested on the KIRAMS test dataset.  

Training dataset Test 
dataset 

TPR TNR PPV NPV AUROC 

Subsampled 
KIRAMS 

KIRAMS 1.000 0.962 0.383 1.000 0.997 

KIRAMS 0.927 0.997 0.882 0.998 0.997  

Table 5 
Performance results of the modified VGG19 trained on the DIRAMS training 
dataset and tested on the DIRAMS and KIRAMS test datasets.  

Training dataset Test dataset TPR TNR PPV NPV AUROC 

DIRAMS DIRAMS 0.991 0.974 0.966 0.993 1.000 
KIRAMS 0.993 0.858 0.145 1.000 0.983  

Table 6 
Performance results of the modified VGG19 trained on the KIRAMS + DIRAMS 
train dataset and tested on the test dataset.  

Training dataset Test 
dataset 

TPR TNR PPV NPV AUROC 

KIRAMS +
DIRAMS 

KIRAMS 0.905 0.995 0.814 0.998 0.994 
DIRAMS 1.000 0.994 0.992 1.000 1.000  

Table 7 
DC discrimination performances for our proposed models and the other studies 
(Note that the listed studies were conducted using different non-public datasets 
and input image type, and thus the dicentric chromosome discrimination per
formance results are not directly comparable.)  

Method Input image 
type 

TPR TNR PPV NPV AUROC 

Classical machine learning method 
Rogan et al. [3] Metaphase 

spreads 
0.850 0.940 – – – 

Shen et al. [7]  0.766 – – – – 
Lorch et al. 

[12]  
0.039 0.910 0.444 0.996 – 

Romm et al. 
[14]  

0.536 0.998 0.823 0.994 – 

Li et al. [17]  0.520 – 0.830 – – 
DL method 
Jang et al. [8] Metaphase 

spreads 
0.905 0.904 – – – 

Shen et al. [10]  0.858 0.996 0.812 0.997 – 
Proposed 

model 
(trained and 
tested on the 
DIRAMS 
dataset) 

Individual 
chromosomes 

0.991 0.974 0.966 0.993 1.000 

Proposed 
model 
(trained and 
tested on the 
KIRAMS 
dataset)  

0.927 0.997 0.882 0.998 0.997  
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(1) On the in vivo dataset, the proposed method achieved a TPR of 
0.927, a TNR of 0.997, a PPV of 0.882, an NPV of 0.998, and an 
AUROC of 0.997.  

(2) On the ex vivo dataset, the proposed method achieved a TPR of 
0.991, a TNR of 0.974, a PPV of 0.966, an NPV of 0.993, and an 
AUROC of 1.000. 

Our proposed model could be integrated into an end-to-end DC 
identification model that utilizes metaphase spread images as input. 
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